

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email

: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

sekprodi-s1-matematika.mipa@ugm.ac.id
Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Calculus II							
Module level, if applicable	Bachelor							
Code, if applicable	MMM-1102							
Subtitle, if applicable	WIVINI-1102							
**	Calculus II							
Courses, if applicable	Calculus II							
Semester(s) in which the	2 nd (second)							
module is taught	Chair of the Lab. of Analysis							
Person responsible for the module	Chair of the Lab. of Alialysis							
	Torre							
Lecturers	Team							
Language	Bahasa Indonesia							
Relation to curriculum	Bachelor Degree, Compulsory, 2 nd semester							
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.							
hours								
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per							
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes indiv							
	study per week, in total is 16 weeks per semester, including mid exam and final exam.							
Credit points	3							
Requirements according to	Students have taken Calculus II course (MMM-1102) and have an examination card							
the examination regulations	where the course is stated on.							
Recommended prerequisites	Students have taken Calculus I (MMM – 1101) and have participated in the final							
	examination of the course.							
Module objectives/intended	After completing this course the students should have:							
learning outcomes	1. CO 1. ability to solve indefinite integral problems with suitable methods.							
	2. CO 2. ability to determine the integral value of a function on interval [a, b] by							
	using the definition of the definite integral.							
	3. CO 3. ability to use the Fundamental Theorem of Calculus and Change of							
	Variable method in integration.							
	4. CO 4. ability to characterize and solve the improper integral.							
	5. CO 5. ability to apply the definite integral to determine the area, volume							
	solids of revolution, arc length, area of surface of solids of revolution, cer							
	mass, and moment of inertia.							
Content	 Indefinite integral: definition, properties, methods. 							
	The Definite integral: definition, properties, The Fundamental Theorem of							
	Calculus, Change of Variable in a Definite Integral, Improper integrals.							
	 Applications of Integration: area, volume of solids of revolution, arc length, 							
	surface area of a solid of revolution, center of mass, Pappus-Guldin's							
	Theorem, moment of inertia.							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)							
examination	1 Final Examination 35% – 45%							
	2 Mid-Term Examination 30% – 35%							
	3 Class Activities: Quiz, Homework, etc 25% – 30%							
The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70								
50%, and 40%, respectively.								
	•							

Reading List 1. Abe Mizrahi and Michael Sullivan, 1990, Calculus and Analytic Geometry, Wadsworth 2. James Stewart, 1999, Calculus, 4th edition, Brooks/Cole Pub. Comp. 3. Robert A. Adam and Christopher Essex, 2010, Calculus, A Complete Course, Pearson. 4. Tim Pengajar Kalkulus, Diktat Kuliah Kalkulus II, FMIPA UGM.	

PLO AND CO MAPPING

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1 CO 2		V					V		
CO 2		V					V		
CO 3		V					V		
CO 4		v							
CO 5					V		V		