

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics

Telp Email : +62 274 552243

: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
 sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Analytic Geometry
Module level, if applicable	Bachelor
Code, if applicable	MMM-1106
Subtitle, if applicable	
Courses, if applicable	Analytic Geometry
Semester(s) in which the	2 nd (second)
module is taught	
Person responsible for the	Chair of the Lab. of Analysis
module	
Lecturer	Atok Zulijanto, S.Si.,M.Si.,Ph.D.
	Dr. Budi Surodjo, M.Si.
Language	Bahasa Indonesia
Relation to curriculum	Bachelor Degree, Compulsory, 2 nd semester
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.
hours	
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual
	study per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3
Requirements according to	Students have taken Analytic Geometry course (MMM-1106) and have an examination
the examination regulations	card where the course is stated on.
Recommended prerequisites	Students have taken Calculus I course (MMM-1101) and have participated in the final
	examination of the course.
Module objectives/intended	The course is intended to provide a good basic knowledge and training on analytic
learning outcomes	geometry to students via vectors approach. Moreover, the course aims to provide a
	tool for students to study more advanced courses such as multivariable calculus.
	After completing this course the students should have :
	1. CO 1. ability to understand the concepts of geometry in two and three
	dimensions using a coordinate system and algebraic representation such as
	straight lines, conic sections, planes, parametric equations, and surfaces.
	2. CO 2. ability to solve problems on geometry in two and three dimension
	through its equations.
	3. CO 3. ability to use translation and rotation to simplify and sketch the graph of
	the second-degree equations in two dimensions.
	4. CO 4. ability to sketch second-degree equations in three dimensions, such as
	cylinders, ellipsoids and nyperboloids.
Content	Vectors in \mathbb{K}^2 and \mathbb{K}^3 . Equations of straight lines in two dimensions: relation
	between two lines in \mathbb{R}^2 , angle between two lines, distance between a point and a line.
	Second-degree equations in \mathbb{R}^2 : circles, parabolas, ellipses, hyperbolas. Polar
	coordinate. Parametric equations : writing Cartesian equations in parametric form,
	parametric equations of circles, cycloids, hypocycloids, epicycloids and asteroids.
	Transformation coordinates: translation and rotation of axes. Straight lines and planes
	in three dimensions. Second-degree equations in three dimensions: cylinders, spheres,
	ellipsoids, paraboloids, hyperboloids, hyperbolic paraboloids, cones. Cylindrical and
	spherical coordinates.

Study and examination	The final mark will be weighted as follows:					
requirements and frms of	No Assessment methods (components, activities) Weight (percentage)					
examination	1 Final Examination 45%					
	2 Mid-Term Examination 30%					
	3 Class Activities: Quiz, Homework, etc 25%					
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70% 50%, and 40%, respectively.	%,				
Media employed	Board, LCD Projector, Laptop/Computer					
Reading List	 Charles Wexler, 1962, <i>Analytic Geometry : A Vector Approach</i>, Addison Wesley Publishing Company, Inc. Charles. C. Carico and Irving Drooyan, 1980, <i>Analytic Geometry</i>, John Wiley & Sons. 					

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		v					v		
CO 2		v							
CO 3		v					v		
CO 4		V							