

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Algebraic Structure I						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-1203						
Subtitle, if applicable	MININI-1203						
Courses, if applicable	-						
	- Ind (assored)						
Semester(s) in which the module is taught	2 nd (second)						
Person responsible for the	Chair of the Lab. of Algebra						
module							
Lecturer(s)	Prof. Dr. Sri Wahyuni						
Language	Bahasa Indonesia						
Relation to curriculum	Bachelor Degree, Compulsory, 2nd semester						
Type of teaching, contact	100 minutes lectures and 120 minutes structured activities (homework and task) per						
hours	week.						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per						
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual						
	study per week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3 (three) credit semester						
Requirements according to	Students have taken Introduction to Algebraic Structure I course (MMM-1203) and						
the examination regulations	have an examination card where the course is stated on.						
Recommended prerequisites	Students have taken Introduction to Mathematical Logic course (MMM-1208) and						
	have participated in the final examination of the course.						
Module objectives/intended	Learning objectives:						
learning outcomes							
	Upon successful completion of this module, students will be able to:						
	CO1:						
	Recognize and analize the basic concept and the fundamental properties of groups						
	as an algebraic structure consisting of one set and one operation, and manipulating						
	skills in applying basic concepts, properties, techniques, and methods developed in						
	group. The students should be able to prove simple consequences of the group						
	axioms, such as the cancellation law;						
	CO2:						
	Demonstrate knowledge of basic concepts of a subgroup, generator, and their						
	properties. The students should be familiar with group of permutations, general						
	linear groups and symmetric groups, cyclic groups, and understand the difference						
	between finding a proof from the axioms that works for all groups, and finding a						
	counterexample.						
	CO3:						
	Demonstrate how to show that a subset of a group is a subgroup or a normal						
	subgroup, and apply Lagrange's theorem. Derive and apply the concept of left and						
	right coset, normal sugroup, and construction of group factor.						
	CO4:						
	Derive and apply the concept of group homomorphism, its kernel and image and						
	the basic properties including the Fundamental Homomorphism Theorem and the						
	uses. Derive and apply the Cayley's Theorem that every group is isomorphic to a						
	group of permutations.						

Content	Syllabus:						
	 Binary operations, axioms group as an algebraic structure consisting of one set and one operation. Manipulating skills in applying basic concepts, properties, Cayley table, techniques, and methods developed in group. subgroup, generator, cyclic groups. general linear groups and special subgroups. Symmetric groups: cycles, general linear groups and special subgroups. Orders of elements; cyclic groups Lagrange's Theorem and its application. Left and right coset, normal sugroup, and construction of group factor. Group homomorphism, its kernel and image and the basic properties including the fundamental homomorphism theorem and the uses. Group isomorphism, and cheking when are two groups `the same'. Cayley theorem, the proof and the uses. 						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	1 Final Examination 40%						
	2 Mid-Term Examination 30%						
	3 Class Activities: Quiz, Homework, etc. 30%						
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively						
Media employed	Board, LCD Projector, Laptop/Computer						
Reading List	 John B. Fraleigh, 1999; A First Course in Abstract Algebra; Fourth Edition; Addison-Wesley Publishing Company, Inc. J. N. Horstein, 1975. Totics in Algebra, John Wiley and Sons Ing. New York. 						
	2. I. N. Herstein, 1975, <i>Topics in Algebra</i> , John Wiley and Sons Inc., New York						
	3. David S. Dummit, and Richard M. Foote, 1999, <i>Abstract Algebra</i> , 3 rd Ed., John Wiley and Sons, Inc., New York						
	4. D.S. Malik, John M. Mordeson, and M.K. Sen, 1998, Fundamental of Abstract, Fourth						
	Edition, Addison-Wesley Publishing Company, Inc.						

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			V			V			V
CO 2			V			V			V
CO 3			V			V			V
CO 4			V			V			V
CO 5			V			V			V