

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email

: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

sekprodi-s1-matematika.mipa@ugm.ac.id
Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Multivariable Calculus I
Module level, if applicable	Bachelor
Code, if applicable	MMM-2109
Subtitle, if applicable	
Courses, if applicable	Multivariable Calculus I
Semester(s) in which the	3th (third)
module is taught	
Person responsible for the	Chair of the Lab. of Analysis
module	
Lecturer(s)	Prof. Dr. Ch. Rini Indrati, M.Si.
	Atok Zulijanto, S.Si.,M.Si.,Ph.D.
Language	Bahasa Indonesia
Relation to curriculum	Bachelor Degree, Compulsory, 3th semester
Type of teaching, contact hours	100 minutes lectures and 120 minutes structured activities per week.
Workload	Total workload is 90.67 hours per semester, which consists of 100 minutes lectures
	per week for 14 weeks, 120 minutes structured activities per week, 120 minutes
	individual study per week, in total is 16 weeks per semester, including mid exam and
	final exam.
Credit points	2
Requirements according to	Students have taken Multivariable Calculus I course (MMM-2109) and have an
the examination regulations	examination card where the course is stated on.
Recommended prerequisites	Students have taken the module of Calculus II (MMM-1102) and Analytic Geometry (MMM-1106) and have participated in the final exam of the module.
Module objectives/intended	After completing this course the students should have:
learning outcomes	1. CO 1. ability to generalize the fundamental concepts of multivariable calculus
-	such as limit, partial derivative, differentiable, double and triple integrals.
	2. CO 2. ability to solve problems on limit and derivative of functions of several,
	double integrals, and triple integrals.
	3. CO 3. ability to apply the concepts of multivaribles calculus effectively to solve
	problems in mathematics such as optimization problems, Taylor series,
	and volume of a solid.
Content	- Topology of \mathbb{R}^n : distance, neighborhod, interior points, boundary points, limit
	points, open sets, close sets, region.
	- Function of several variables and its graph.
	- Limit and continuity of functions of several variables.
	- Partial derivatives and its geometric interpretations, higher partial derivatives,
	differentiable, differential, partial derivatives of composite functions and implicit
	functions, Taylor series of multivariable functions, maximum and minimum
	·
	problems with and without constraint.
	- Multiple integrals and its applications : double integrals in cartesian and polar
	coordinates, triple integrals in cartesian, cylindrical, and spherical coordinates,
	double and triple integrals with transformation, volume of solids.
Study and examination	The final mark will be weighted as follows:

requirements and forms of	No	Assessment methods (components, activities)	Weight (percentage)		
examination	1	Final Examination	45%		
	2	Mid-Term Examination	30%		
	3	Class Activities: Quiz, Homework, etc	25%		
	The initial cut off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.				
Media employed	Board	d, LCD Projector, Laptop/Computer			
Reading List	 Angus E. Taylor, W. Robert Mann, 1989, Advanced Calculus, Blaisdell. Charles Dixon, 1981, Advanced Calculus, John Wiley 				

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			V			V	V		V
CO 2		V					V		V
CO 3		V			V		V		V