

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp :+62 274 552243

Telp Email

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Numerical Analysis					
	Bachelor					
Module level, if applicable						
Code, if applicable	MMM-2401					
Subtitle, if applicable						
Courses, if applicable	Introduction to Numerical Analysis					
Semester(s) in which the	4 th (fourth)					
module is taught						
Person responsible for the module	Chair of the Lab. of Mathematical Computation					
Lecturer(s)	Dr. Lina Aryati, M.S. and Dr. Sumardi, M.Si.					
	Bahasa Indonesia					
Language Relation to curriculum						
	Bachelor Degree, Compulsory, 4 th semester					
Type of teaching, contact	100 minutes lectures, 240 minutes structured activities (homework and task), and 170					
hours	minutes laboratory work per week.					
Workload	Total workload is 136 hours per semester, which consists of 100 minutes lectures per					
	week for 14 weeks, 120 minutes structured activities per week, 120 minutes individual					
	study per week, and 170 minutes laboratory work per week, in total is 16 weeks per					
	semester, including mid exam and final exam.					
Credit points	3(1)					
Requirements according to	Students have taken Introduction to Numerical Analysis course (MMM-2401) and					
the examination regulations	have an examination card where the course is stated on.					
Recommended prerequisites	Students have taken Ordinary differential equations (MMM-2301) and have					
	participated in the final examination of the course.					
	Before taking this course, students must have a good understanding about concepts					
	of calculus and ordinary differential equations					
Module objectives/intended	After completing this course the students should have :					
learning outcomes	CO1. ability to analyze the error concept and predict it.					
	CO2. ability to identify roots of nonlinear equations by Bisection, Newton's, and					
	Secant methods.					
	CO3. ability to identify polynomial which interpolates the given data.					
	CO4. ability to solve integrals and derivatives numerically by the suitable					
	rules/methods.					
	CO5. ability to apply the Euler, Taylor and Runge-Kutta methods, analyze their error					
	and stability, and solve initial value problem by these methods.					
Content	Topics include:					
	a. Taylor polynomial and the error in Taylor polynomial.					
	b. The binary number system, floating point number.					
	c. Error: definitions, sources, and examples.					
	d. Finding roots of nonlinear equations: Bisection, Newton's, and Secant methods,					
	and their error and convergence rate.					
	e. Interpolation: Polynomial interpolation and the error in polynomial					
	interpolation.					
	f. Numerical Integration: Trapezoidal and Simpson rules, and the error formulas.					
	g. Numerical Differentiation: Forward difference, Back ward difference, central					
	difference, undetermined Coefficients method, their error and effects of error in					
	function values.					

	h. Numerical method for Initial Value Problems: Euler, Taylor and Runge Kutta								
	Methods, their error and stability.								
Study and examination	The final mark will be weighted as follows:								
requirements and forms of	No Assessment methods (components, activities)	Weight (percentage)							
examination	1 Final Examination	30							
	2 Mid-Term Examination	25							
	3 Laboratory	30							
	4 Class Activities: Quiz, Homework, etc	15							
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.								
Media employed	White/Black Board, LCD Projector, Laptop/Computer, Laboratory								
Reading List	 Kendall Atkinson, and Weimin Han, 2004, <i>Elementary Numerical Analysis</i>, 3rd Edition, John Wiley & Sons; New York. James L. Buchanan, and Peter R. Turner, 1992, <i>Numerical Methods and Analysis</i>, McGraw Hill Inc., New York. Brian Bradie, 2006, <i>A Friendly Introduction to Numerical Analysis</i>, Pearson International Edition, New Jersey. Duane C. Hanselman, and Bruce L. Littlefield, 2003, <i>MATLAB Bahasa Pemrograman</i> 								
	Teknis, Perason Education Asia, Andi, Yogyakarta.								

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		v	v						V
CO 2		v	v		V				V
CO 3		v	v		V				V
CO 4		v	v		V				V
CO 5			V	v	V				v