

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara BulaksumurYogyakarta 55281Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics Telp :+62 274 552243 Telp Email

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Partial Differential Equations					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-2310					
Subtitle, if applicable	-					
Courses, if applicable	Introduction to Partial Differential Equations					
Semester(s) in which the	4 th (fourth)					
module is taught						
Person responsible for the	Chair of Applied Mathematics Research Group					
module						
Lectures	Dr. Lina Aryati, M.S. and Dr. Sumardi, M.Si.					
Language	Bahasa Indonesia					
Relation to curriculum	Compulsory course in the second year (4th semester) Bachelor Degree					
Type of teaching, contact	3 hours lectures, 3 hours structured activities.					
hours						
Workload	150 minutes lectures, 180 minutes structured activities, 180 hours individual study, 16 weeks per semester (including mid-term and final examinations), 136 hours per					
	semester.					
Credit points						
Requirements according to the examination regulations	Students have taken Introduction to Partial Differential Equations course (MMM-2310) and have an examination card where the course is stated on.					
Recommended prerequisites						
Recommended prerequisites	Multivariable Calculus I (MMM-2109), Ordinary differential equations (MMM-2301) Before taking this course, students must have a good understanding about concepts of multivariable calculus, ordinary differential equation.					
Module objectives/intended	After completing this course the students have ability to					
learning outcomes	CO 1. solve first order linear and quasi linear initial value problems by method of characteristics.					
	CO 2. solve initial boundary value problems by the method of separation variables. CO 3. recognize how to prove the existence and uniqueness solution of an initial					
	boundary value problem.					
	CO 4. solve initial value problems on infinite interval by the Fourier Integral or Fourier Transform.					
	CO 5. solve initial value problems on semi-infinite interval by the Fourier Transform. CO 6. determine d'Alembert solution.					
	CO 7. solve boundary value problem on disc by Fourier-Bessel series.					
	CO 8. solve initial boundary value problems by finite difference method.					
Content	a. Boundary and initial conditions					
	b. Method of Characteristics: first order linear and quasi linear initial value problems.					
	c. Fourier Series					
	d. Sturm Liouville eigenvalue problems					
	e. Method of Separation variables: Initial boundary value problems parabolic,					
	hyperbolic, and elliptic types f Example on avietance and uniqueness solution of initial houndary value					
	f. Example on existence and uniqueness solution of initial boundary value problem					
	g. The Fourier Integral and solution of Initial boundary value problems on					
	infinite interval					

	h. The Fourier Transform and solution of Initial boundary value problems on							
	semi-infinite interval							
	i. D'Alembert Solution							
	j. Fourier-Bessel Series and its Applications							
	k. Example on numerical solution of Initial boundary value problems by finite							
	difference method							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components, activities) W	eight (percentage)						
examination	1 Final Examination	40%						
	2 Mid-Term Examination	30%						
	3 Class Activities: Quiz, Homework, etc.	30%						
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,							
	50%, and 40%, respectively.	1 0						
Media employed	White/Black Board, LCD Projector, Laptop/Computer							
Reading List								
8	McGraw-Hill, New York.							
	 [2] Zauderer, E., 2011, Partial Differential Equations of Applied Mathematics, 3rd Ed, John Wiley & Sons, New York. [3] Humi, M. And Miller, W.B., 1992, Boundary Value Problems and Partial Differential 							
<i>Equations</i> , PWS-KENT Publishing Company, Boston.								

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		V			V	V	V		V
CO 2		V			V		V		
CO 3			V			V	V		V
CO 4		V			V		V		
CO 5		V			V		V		
CO 6		V					V		V
CO 7		V			V		V		
CO 8		V				V	V		