

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

Telp	: +62 274 552243
Email	: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
	sekprodi-s1-matematika.mipa@ugm.ac.id
Website	: http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Boundary Value Problems					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-3307					
Subtitle, if applicable	-					
Courses, if applicable	Introduction to Boundary Value Problems					
Semester(s) in which the	5 th (fifth)					
module is taught						
Person responsible for the	Chair of the Lab. of Applied Mathematics					
module						
Lecture(s)	Drs. Moch Tari, M.Si					
Language	Bahasa Indonesia					
Relation to curriculum	Elective course in the third year (5 th semester) Bachelor Degree					
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.					
hours						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per					
, ormout	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual					
	study per week, in total is 16 weeks per semester, including mid exam and final exam.					
Credit points	3					
Requirements according to	Students have taken Introduction to Boundary Value Problems course (MMM-3307)					
the examination regulations	and have an examination card where the course is stated on.					
Recommended prerequisites	Students have taken Introduction to partial differential equations course (MMM-2310)					
Recommended prerequisites	and have participated in the final examination of the course.					
Module objectives/intended	After completing this course the students have ability to					
learning outcomes	CO1 classify linear second order PDE's					
learning outcomes	CO2 model the vibrating string and solve the model					
	model the vibrating sting and solve the model model					
	CO3 solve boundary value problem by Fourier-Legendre series					
	solve initial value problems by the Laplace Transform					
Content	Linear second order partial differential equations. Vibrating String, Fourier series for					
Content	multivariable functions, Vibrations of the circular membrane. Fourier-Legendre series					
	and its aplications. Laplace Transform and its aplications.					
Study and avanination						
Study and examination	The final mark will be weighted as follows:					
requirements and forms of examination	NoAssessment methods (components, activities)Weight (percentage)1Final Examination40%					
examination						
	2 Mid-Term Examination 30%					
	3 Class Activities: Quiz, Homework, etc. 30%					
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,					
	50%, and 40%, respectively.					
Madia amplayed	White/Black Board, LCD Projector, Laptop/Computer					
Media employed	1. Paul DuChateau, and David W. Zachmann, 2011, Partial Differential Equations, 3 rd					
Reading List	Edition, McGraw-Hill, New York.					
	2. K. M. Humi, and W. B. Miller, 1992, Boundary Value Problems and Partial Differential					
	Equations, PWS-KENT Publishing Company, Boston.					
	3. J. Ray Hanna and John H. Rowland 1990, Fourier Series and Integrals of Boundary Value					
	Problems, 2 nd Edition, Dover Publication, Inc., New York.					

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1						v			v
CO 2					v	v			V
CO 3					v	v			v