

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

Telp Email : +62 274 552243

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Dynamical System						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-3306						
Subtitle, if applicable	-						
Courses, if applicable	Dynamical System						
Semester(s) in which the	6 th (Sixth Semester)						
module is taught							
Person responsible for the	Chair of the Lab. of Applied Mathematics						
module							
Lecture(s)	Dr. Fajar Adi Kusumo, M.Si., and Prof. Dr. Widodo, M.S.						
Language	Bahasa Indonesia						
Relation to curriculum	Compulsory course in the third year (6th semester) Bachelor Degree						
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.						
hours	1						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per						
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual						
	study per week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3						
Requirements according to	Students have taken Dynamical System course (MMM-3306) and have an examination						
the examination regulations	card where the course is stated on.						
Recommended prerequisites	Students have taken Elementary Linear Algebra course (MMM-1202). Elementary						
1 1	Differential Equations course (MMM-2301), and have participated in the final						
	examination of the course.						
	Before taking this course, students must have a good understanding about the basic						
	concepts of the Linear Algebra and Differential Equations.						
Module objectives/intended	After completing the course, the students will be able to:						
learning outcomes	CO1. recognize the concept of the Discrete and Continuous Dynamical Systems.						
	CO2. recognize the concept of the Nonlinear Differential Equations						
	CO3. analyze the fixed point and periodic point of the Discrete Dynamical System.						
	CO4. analyze the invariant structures of the continuous dynamical system.						
	CO5. do simple analysis to the mathematical models which are use the nonlinear						
	differential equations and difference equations.						
Content	Topics :						
	a. Discrete Dynamical Systems : History and Definition of Discrete Dynamical						
	Systems, Orbits, Graphical Analysis, Fixed Point, Fixed point and periodic points,						
	Fixed point and periodic points, Bifurcations, Dynamics of quadratic maps' family						
	$Q_{c}(x) = x^{2} + c.$						
	b. <u>Continuous Dynamical System :</u> Linear and Nonlinear Differential Equations,						
	Definition of the Dynamical System and examples, Invariant structures						
	(equilibrium points, periodic solution, and invariant manifold), Linearization and						
	Stability of the equilibrium point, First Integral and Lyapunov Function, Poincare						
	Map (introduction).						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	1 Final Examination 40%						
	2 Mid-Term Examination 30%						

	3 Class Activities: Quiz, Homework, etc 30%				
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.				
Media employed	White/Black Board, LCD Projector, Laptop/Computer				
Reading List 1. Robert L. Devaney, 2018, A first course in chaotic dynamical systems, CRC Press Ta					
_	Group.				
	2. Stephen Wiggins, 2003, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2 nd Ed,				
	Springer-Verlag New York, Inc.				
	3. Lawrence Perko, 2001, Differential Equations and Dynamical System, 3rd Ed, Springer.				
	4. Verhulst, F., 1996, Nonlinear Differential Equations and Dynamical Systems, 2nd Ed., Springer-				
	Verlag Berlin Heidelberg.				

PLO and CO Mapping

	LO 1	LO 2	LO 3	LO 4	LO 5	LO 6	LO 7	LO 8	LO 9
CO 1						V			v
CO 2						V			v
CO 3					V	V			
CO 4					V	V			v
CO 5					V				V