

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email

Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id

Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Control Theory						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-3312						
Subtitle, if applicable	-						
Courses, if applicable	Introduction to Control Theory						
Semester(s) in which the	6 th (sixth)						
module is taught							
Person responsible for the	Chair of the Lab. of Applied Mathematics						
module							
Lecture(s)	Dr. Ari Suparwanto, M.Si.						
Language	Bahasa Indonesia						
Relation to curriculum	Elective course in the third year (6th semester) Bachelor Degree						
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.						
hours	•						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per						
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes indiv						
	study per week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3						
Requirements according to	Students have taken Introduction to Control Theory course (MMM-3312) and have						
the examination regulations	an examination card where the course is stated on.						
Recommended prerequisites							
	have participated in the final exam of the module.						
Module objectives/intended	After completing this course, the students have ability to:						
learning outcomes	CO 1. analyze control theory problems, the open-loop and closed-loop control and						
determine the feedback control and the observer design.							
	CO 2. analyze the separation principle of feedback control and the observer.						
CO 3. solve the decoupling problem by state feedback.							
	CO 4. Apply some methods to determine the solution of the open-loop and closed-						
Contant	loop linear quadratic optimal control.						
Content	Models of open-loop and closed-loop (feedback) controller. Feedback control and pole placement. Observers. The separation principle. Decoupling by State Feedback. The						
	open-loop linear quadratic optimal control. Lyapunov equation. The closed-loop linear						
quadratic regulator. The Riccati differential equations. The steady state							
	regulator. The algebraic Riccati equations.						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	Final Examination 40%						
	2 Mid-Term Examination 30%						
	3 Quiz and Homework (Project) 30%						
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,						
	50%, and 40%, respectively.						
Media employed	Board, LCD Projector, Laptop/Computer						
Reading List	1. Geert Jan Olsder, J. W. van der Woude, J. G. Maks, Dr. Jeltsema, 2011, Mathematical Systems						
	Theory, 4th Edition, VSSD Delft University of Technology.						
	2. Frank Lewis, 1992, Applied Optimal Control, Prentice Hall International.						

- 3. Katsuhiko Ogata, 1990, *Modern Control Engineering*, 2nd ed. Englewood Cliffs, N.J.,: Prentice Hall, Inc.
- 4. Chen, C.-T., 1984, "Linear Systems Theory and Design", CBS College Publishing, New York.
- 5. Huibert Kwakernaak and Raphel Sivan, 1972, *Linear Optimal Control Systems*, Wiley, Interscience Division of John Wiley and Sons.

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1				V		V			v
CO 2				V	V	V			V
CO 3				V		V	V		V
CO 4				V		V			V