

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara BulaksumurYogyakarta 55281Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp :+62 274 552243

Telp Email

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Partial Differential Equations						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-2310						
Subtitle, if applicable							
Courses, if applicable	Introduction to Partial Differential Equations						
Semester(s) in which	4 th (fourth)						
themodule is taught							
Person responsible for	Chair of Applied Mathematics Research Group						
themodule	Shar of Appled Matternates Research Oroup						
Lectures	Dr. Lina Aryati, M.S. and Dr. Sumardi, M.Si.						
Language	Bahasa Indonesia						
Relation to curriculum							
Type of teaching, contact	Bachelor Degree, Compulsory, 4 th semester.						
hours	3 hours lectures, 3 hours structured activities.						
Workload	150 minutes lectures, 180 minutes structured activities, 180 hours individual study, 16						
WOIKIOad	weeks per semester (including mid-term and final examinations), 136 hours per						
	semester.						
Credit points	3						
Requirementsaccording to	Multivariable Calculus I (MMM-2109), Ordinary differential equations (MMM-2301)						
the examination regulations	Multivariable Calculus I (MIMINI-2109), Ordinary differential equations (MIMINI-2301)						
	Before taking this course, students must have a good understanding shout concents						
Recommended prerequisites	Before taking this course, students must have a good understanding about concepts						
Madala ahianting diatan dad	of multivariable calculus, ordinary differential equation.						
Module objectives/intended	After completing this course the students have ability to						
learning outcomes	CO 1. solve first order linear and quasi linear initial value problems by method of						
	characteristics.						
	CO 2. solve initial boundary value problems by the method of separation variables.						
	CO 3. recognize how to prove the existence and uniqueness solution of an initial boundary value problem.						
	CO 4. solve initial value problems on infinite interval by the Fourier Integral or						
	Fourier Transform.						
	CO 5. solve initial value problems on semi infinite interval by the Fourier Transform.						
	CO 6. determine d'Alembert solution.						
	CO 7. solve boundary value problem on disc by Fourier-Bessel series.						
	CO 8. solve initial boundary value problems by finite difference method.						
	co o. solve initial boundary value problems by initie difference method.						
Content	a. Boundary and initial conditions						
Content	b. Method of Characteristics: first order linear and quasi linear initial value						
	problems.						
	c. Fourier Series						
	d. Sturm Liouville eigenvalue problems						
	e. Method of Separation variables: Initial boundary value problems parabolic,						
	hyperbolic, and elliptic types						
	f. Example on existence and uniqueness solution of initial boundary value						
	problem						
	g. The Fourier Integral and solution of Initial boundary value problems on infinite interval						
	h. The Fourier Transform and solution of Initial boundary value problems on						
	1. The Fourier Transform and solution of mittal boundary value problems on						

	semi infinite interval							
	i. D'Alembert Solution							
	j. Fourier-Bessel Series and its Applications							
	k. Example on numerical solution of Initial boundary value problems by fin							
	difference method							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)							
examination	1 Final Examination 40%							
	2 Mid-Term Examination 30%							
	3 Class Activities: Quiz, Homework, etc 30%							
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.							
Media employed	White/Black Board, LCD Projector, Laptop/Computer							
Reading List	[1] G. Hadley, 1973, <i>Linear Progamming</i> , Addison Wesley.							
Reading Last	[2] Hamdy A. Taha, 1998, <i>Operations Research an Introduction</i> , Prentice-Hall, Pte Ltd, Singapor							
	[3] Wayne L. Winston, 2004, Operation Research Application and Algorithms, Ruxbury Press.							
	[4] Indarsih, 2004, Modul Praktikum Program Linear, Departemen Matematika, FMIPA,							
	UGM.							

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		V			V	V	V		V
CO 2		V			V		V		
CO 3			V			V	V		V
CO 4		V			V		V		
CO 5		V			V		V		
CO 6		V					V		V
CO 7		V			V		V		
CO 8		V				V	V		