

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: mathm.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id

Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Stochastic Processes							
Module level, if applicable	Bachelor							
Code, if applicable	MMS-3002							
Subtitle, if applicable								
Courses, if applicable								
Semester(s) in which	Second	l year (odd semester)						
themodule is taught	, (,							
Person responsible for	Chair of the Department of Mathematics							
themodule								
Lecture(s)	Dr. IrwanEndrayanto A, S.Si., M.Sc							
()	Drs. Danardono, MPH., Ph.D.							
Language	Bahasa Indonesia							
Relation to curriculum	Compulsory course in the second year (3 rd semester)							
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.							
hours	150 minutes rectares and 160 minutes structured activities per week.							
Workload	Total v	Total workload is 136 hours per semester, which consists of 150 minutes lectures per						
		or 14 weeks, 180 minutes structured a						
	individual study per week, in total is 16 weeks per semester, including mid							
	final exam.							
Credit points	3 (three)							
Requirementsaccording to	Students have taken Introduction to Stochastic Processes course (MMM-3002) and							
the examination regulations	have an examination card where the course is stated on.							
Recommended prerequisites								
	have participated in the final examination of the course.							
	Module objectives/intended CO.1. Students are able to define various types of stochastic processes							
learning outcomes	types of stochastic processes from one							
	another.							
	CO.2. Students are able to derive often-used theoretical properties of stochastic							
	processes.							
	CO.3. Students are able to apply both analytical and computational techniques to							
		solve stochastic models.	Later					
Content	Week	Topic	Sub-Topic					
	1.	Introduction Stochastic	-					
		Processes and its applications	D 5 15 1					
	2.	The Poisson Process	- Definition and Examples					
	3.		- Inter-Arrival and Waiting Time					
	4.	D' T' M I CI :	Distribution					
	5.	Discrete Time Markov Chains	- Non-homogeneous Poisson					
	6.		Process.					
	7. 8.	Mid over	- Classification of States					
	8. 9.	Mid-exam Discrete Time Markov Chains	Measure of Stationary ProbabilitiesFinite Markov Chain					
	10.	Continuous Time Markov Chains	- Finite Markov Cham					
	10.	Continuous Time Markov Chams	- Countable Markov Chain					
	12.	Applications to queueing theory	- Birth and Death Processes					
	13.	The Renewal Theory	- Time reversible					
	14.	The Renewal Theory	- Inite reversible					
	17.							

	15. Brownian Motion and Stationary Final exam - Regenerative Processes - Applications of the Renewal Theory - The use of the Brownian motion						
Study and examination requirements and forms of examination	The final mark will be weighted as follows: No Assessment methods (components, activities) 1 Final Examination 2 Mid-Term Examination 3 Presentation 4 Class Activities: Quiz, Homework, etc 5 Peer Assesment Weight (percentage) 30 25 25 20 10						
Media employed	The initial cut- off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively. Projector, board, e-learning via http://elisa.ugm.ac.id						
Reading List	 Paul G. Hoel, Sidney C. Port dan Charles J. Stone, 1972, Introduction to Stochastic Processes. Houghton Mifflin Company. Randolph Nelson, 1995, Probability, Stochastic Processes and Queueing Theory, The Mathematics of Computer Performance Modeling, Springer-Verlag. Gregory F. Lawler, 2006, Introduction to Stochastic Processes, Chapman & Hall/CRC Probability Series. 						
	 Sheldon M. Ross, 1996, Stochastic Processes. 2nd editon. John Wiley & Sons, Inc. Shelldon M. Ross, 2010, Introduction to Probability Models. 10th edition. California. Academic Press Wayne L. Winston, 2003, Operations Research: Applications and Algorithms, Duxbury Press. 						

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v		v				V
CO 2			v		v				V
CO 3			v		v				V

3,5,9

- PLO 3 are able to develop their logic and mathematical thinking. They are in particular able to formulate mathematical hypotheses and have an understanding of how such hypotheses can be verified or falsified using mathematical methods.
- PLO 5 have comprehensive knowledge in mathematical modelling and able to create mathematical models, both in mathematics, in other fields, and in real problems. They are in particular able to solve and determine the strategy how to solve the problems.
- PLO 9 have ability to apply their mathematics ability in their carrier related to mathematics and to continue their program in master and doctoral programme.