

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics Telp : +62 274 552243

 Tempi
 : not 21+1-50221+5

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Algebraic Structure I						
Module level, if	Bachelor						
applicable							
Code, if applicable	MMM-1203						
Subtitle, if applicable	-						
Courses, if applicable	Introduction to Algebraic Structure I						
Semester(s) in which	2 nd (second)						
the module is taught							
Person responsible for	Chair of the Lab. of Algebra						
the module							
Lecturer(s)	Prof. Dr. Sri Wahyuni						
Language	Bahasa Indonesia						
Relation to curriculum	Compulsory course in the first year (2nd semester) Bachelor Degree						
Type of teaching,	100 minutes lectures and 120 minutes structured activities (homework and task) per week.						
contact hours							
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week						
	for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per						
	week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3						
Requirements	Students have taken Introduction to Algebraic Structure I course (MMM-1203) and have an						
according to the	examination card where the course is stated on.						
examination							
regulations							
Recommended	Students have taken Introduction to Mathematical Logic course (MMM-1208) and have						
prerequisites	participated in the final examination of the course.						
Module objectives/intended	Learning objectives:						
learning outcomes	Upon successful completion of this module, students will be able to:						
icarining outcomes	CO1:						
	Recognize and analize the basic concept and the fundamental properties of groups as an						
	algebraic structure consisting of one set and one operation, and manipulating skills in						
	applying basic concepts, properties, techniques, and methods developed in group. The						
	students should be able to prove simple consequences of the group axioms, such as the						
	cancellation law;						
	CO2:						
	Demonstrate knowledge of basic concepts of a subgroup, generator, and their properties. The students should be familiar with group of permutations, general linear groups and						
	symmetric groups, cyclic groups, and understand the difference between finding a proof						
	from the axioms that works for all groups, and finding a counterexample.						
	CO3:						
	Demonstrate how to show that a subset of a group is a subgroup or a normal subgroup,						
	and apply Lagrange's theorem. Derive and apply the concept of left and right coset, normal						
	sugroup, and construction of group factor.						
	CO4:						

	Derive and apply the concept of group homomorphism, its kernel and image and the basic properties including the Fundamental Homomorphism Theorem and the uses. Derive and apply the Cayley's Theorem that every group is isomorphic to a group of permutations.							
Content	 Syllabus: Binary operations, axioms group as an algebraic structure consisting of one set and one operation. Manipulating skills in applying basic concepts, properties, Cayley table, techniques, and methods developed in group. subgroup, generator, cyclic groups. general linear groups and special subgroups. Symmetric groups: cycles, general linear groups and special subgroups. Orders of elements; cyclic groups Lagrange's Theorem and its application. Left and right coset, normal sugroup, and construction of group factor. Group homomorphism, its kernel and image and the basic properties including the fundamental homomorphism theorem and the uses. Group isomorphism, and cheking when are two groups 'the same'. Cayley theorem, the proof and the uses. 							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of examination	NoAssessment methods (components, activities)Weight (percentage)1Final Examination40%2Mid-Term Examination30%3Class Activities: Quiz, Homework, etc.30%							
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively							
Media employed	Board, LCD Projector, Laptop/Computer							
Reading List	1. Minking Eie, Shou-Te Chang, 2017, A Course on Abstract Algebra, World Scientific							
	 J.S. Milne, 2017, "Group Theory", Copyright c 1996–2017 http://www.jmilne.org/math//CourseNotes/GT.pdf N. Jackson, 2017, "A Course in Abstract Algebra", http://homepages.warwick.ac.uk/~maseay/doc/adg.pdf J. Moore, 2014, "Introduction to Abstract Algebra", 1st Edition, Academic Press. (https://www.elsevier.com/books/introduction-to-abstract-algebra/moore/978-0-08- 092488-5) A. Machi, 2012, "Groups: An Introduction to Ideas and Methods of the Theory of Groups", Springer Milan Heidelberg New York Dordrecht London © Springer-Verlag Italia. https://www.springer.com/gp/book/9788847024205, http://scienze-como.uninsubria.it/previtali/Teoria%20dei%20Gruppi/Machi- Groups.pdf W. Keith Nicholson. 2012, "Introduction to abstract algebra", Wiley-Interscience John Wiley & Sons], Hoboken, NJ, fourth edition, 2012. https://books.google.co.id/books/about/Introduction to Abstract Algebra.html?id=w- Gal_papRcEC&redir_esc=y Thomas W. Judson , 2012, "Abstract Algebra Theory and Applications", Stephen F. Austin State University, http://abstract.ups.edu/download/aata-20120811.pdf KH Fieseler, 2010, "Groups, Rings and Fields", http://www.2.math.uu.sc/~khf/dachs.pdf Landin. J., 2010, An Introduction to Algbraic Structure, Dover Book on Mathematics, New York John B. Fraleigh, 1999; A First Course in Abstract Algebra, Fourth Edition; Addison-Wesley Publishing Company, Inc. David S. Dummit, and Richard M. Foote, 1999, Abstract Algebra, 3rd Ed., John Wiley and Sons, Inc., New York D.S. Malik, John M. Mordeson, and M.K. Sen, 1998, Fundamental of Abstract, Fourth Edition, Addison-Wesley Publishing Company, Inc. 							
	13. I. N. Herstein, 1975, Topics in Algebra, John Wiley and Sons Inc., New York							

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			v			v

CO 2		v		V		V
CO 3		v		v		v
CO 4		v		v		v
CO 5		v		v		v