

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: matematika.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp :+62 274 552243

Telp Email

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Theory of Differential Equations						
Module level, if applicable	Bachelor						
Code, if applicable	MMM- 3103						
Subtitle, if applicable							
Courses, if applicable	Introduction to Theory of Differential Equations						
Semester(s) in which the	6 th (sixth)						
module is taught							
Person responsible for the	Chair of the Lab. of Analysis						
module							
Lecture(s)	Prof. Dr. Ch. Rini Indrati, M.Si.						
Language	Bahasa Indonesia						
Relation to curriculum	Bachelor Degree, Elective, 6th semester						
Type of teaching, contact hours	100 minutes lectures and 120 minutes structured activities per week.						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3						
Requirements according to the examination regulations	Students have taken the module of Introduction to Analysis I (MMM-3101) and have participated in the final exam of the module. The students should take Introduction to Analysis II (MMM-3102) at least in the same semester						
Recommended prerequisites	Competencies in Elementary Differential Equations, Introduction to Analysis I, and sequence of functions.						
Module objectives/intended learning outcomes	After completing this course the students have ability to : CO 1. prove some conditions in Picard Theorem.						
	CO 2. analyze the existence and uniqueness of the solution of initial value problem and give an approximation solution of the initial value problem.						
	CO 3. analyze the existence and uniqueness of the solution of linear system of differential equations with initial conditions.						
	CO 4. characterize the critical/equilibrium point of linear system of differential equations and prove the stability of the critical/equilibrium point.						
	CO 5. perform Sturm-Liouville theorem to analyze:						
	i. the relation between two solutions of second order linear differential equations.						
	ii. the zeros of two solutions of second order linear differential equations.						
Content	 a. Differential equation of order one: approximation solution, existence and uniqueness of the solution of intial value problem, stability of the solution. b. System of differential equations of order one: existence and uniqueness of the solution, critical points, stability of a solution c. Sturm-Liouville's Theorem: Sturm-Liouville's theorem and its applications. 						

Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)							
examination	1 Final Examination 45%							
	2 Mid-Term Examination 30%							
	3 Class Activities: Quiz, Homework, etc 25%							
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 7 50%, and 40%, respectively.							
Media employed	Board, LCD Projector, Laptop/Computer							
Reading List	 Shepley L. Ross, 1984, <i>Differential Equations</i>, third edition, John Wiley & Sons. George F. Simmons, and John S. Robertson, 1991, <i>Differential Equations with Applications</i> 							
	and Historical Notes, Second edition, McGraw-Hill, New York. John L. Troutman, and Maurino Bautista, 1994, <i>Boundary Value Problems of Applied Mathematics</i> , PWS Publ. Co., Boston.							

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			V			v
CO 2			v			V	V		v
CO 3			v		V	V	V		v
CO 4			v		v				v