

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Graph Theory						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-2206						
Subtitle, if applicable							
Courses, if applicable							
Semester(s) in which the	4 th (fourth)						
module is taught	4 ⁴ (100111)						
Person responsible for the	Chair of the Leb. of Algebra						
module	Chair of the Lab. of Algebra						
Lecturer(s)	Dr. rer.nat. Indah Emilia, M.Si.						
	Dr. rer. nat. Yeni Susanti, M.Si.						
	Dr. Budi Surodjo, M.S.						
Language	Bahasa Indonesia						
Relation to curriculum	Bachelor Degree, Elective Course, 4th semester						
Type of teaching, contact	150 minutes lectures, 180 minutes structured activities.						
hours							
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per						
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual						
	study per week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3						
Requirements according to	Students have taken Introduction to Graph Theory course (MMM-2206) and have an						
the examination regulations	examination card where the course is stated on.						
Recommended prerequisites	Students have taken Discrete Mathematics II course (MMM-2207) and have						
	participated in the final examination of the course.						
Module objectives/intended	After completing this course the students should have :						
learning outcomes	CO 1. ability to prove some properties of graph.						
	CO 2. ability in problem solving skill using procedure in graph theory						
	CO 3. ability to apply graph theory in simple mathematical modelling						
Content	Basic consept of graph theory, Simple Graph, Multiple Graph, Isomorphic Graph,						
	Types of Graph, Complement of Graph, Planar Graph, Euler Formule, Subgraph,						
	Connected Graph, Path, Trail, Circuit, Cut sets, Bridge of Konigsberg, Eulerian Graph,						
	Eulerian Trail, Hamiltonian Graph, Tree, Minimum spanning tree, Kruskal Algorithm,						
	Prime Algorithm, Planarity and Duality, Coloring of Graph, Directed Graph, Prunning						
	Algorithm, Matrix and Graphs/Digraphs, PERTH-Graph and Shortest Distance Tree.						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	1Final Examination40%						
	2 Mid-Term Examination 30%						
	3 Class Activities: Quiz, Homework, etc. 30%						
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,						
	50%, and 40%, respectively.						
Media employed	Projector, Board						
	Projector, Board 1. Robin J. Wilson, 1972; Introduction to Graph Theory, Longman Group Limited.						
Reading List	 Robin J. Wilson, 1972, Introduction to Graph Theory, Longhian Group Linneed. Joan M. Aldous, Robin J. Wilson, 2000, Graph and Applications: An Introductory Approach, 						
	Springer, London.						

3.	Seymour Lipschutz, 1976; Theory and Problems of Discrete Mathematics; Schaum's OutlineSeries;
	McGraw-Hill Book Company.
4.	B. Andrasfai, 1977, Introductory Graf Theory, Acade'miai Kiado', Budapest
5.	RMJT Soehakso, Teori Graf, FMIPA UGM.

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v		v	v	v		v
CO 2		v			v				
CO 3					V				