

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp :+62 274 552243

Telp Email

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction of Module Theory							
Module level, if applicable	Bachelor							
Code, if applicable	MMM-4207							
Subtitle, if applicable								
Courses, if applicable								
Semester(s) in which the	Third year (Odd compater)							
module is taught	Third year (Odd semester).							
Person responsible for the	Chair of Algebra Research Group							
module	Chair of Algebra Research Group							
Lecturer(s)	Dr. Indah Emilia Wijayanti							
Language	Bahasa Indonesia							
Relation to curriculum	Elective Course							
Type of teaching, contact	150 minutes lectures, 180 minutes supervised activities, and 180 minutes individual							
hours	learning per week.							
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per							
W official	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual							
	study per week, in total is 16 weeks per semester, including mid exam and final exam.							
Credit points	3							
Requirements according to	Students have taken Introduction of Module Theory course (MMM-4207) and have							
the examination regulations	an examination card where the course is stated on.							
Recommended prerequisites	Students have taken Introduction to Linear Algebra course (MMM-2202) and have							
recommended prerequinted	participated in the final examination of the course.							
Module objectives/intended	Upon successful completion, students able to:							
learning outcomes	CO 1 : recognize the fundamental properties of modules and submodules							
	CO 2 : recognize the concept of module homomorphism							
	CO 3 : develop the concepts of generator and linear independence in modules							
	CO 4 : recognize the concept of exact sequence and its use for further analysis							
Content	1. Modules and Submodules,							
	2. Generators,							
	3. Direct sums,							
	4. Factor modules,							
	5. Module homomorphism							
	6. Module homomorphism theorem,							
	7. Finitely generated modules,							
	8. Modules over Principal Ideal Domain,							
	9. Annihilators, torsion modules and torsion free modules.							
	10. Free modules and projective modules,							
	11. Exact sequences.							
Study and examination	The final mark will be computed from a proportional weight of assignments, mid							
requirements and forms of	examination and final examination. The final mark will be weighted as follows:							
examination								
	No Assessment methods (components, activities) Weight (percentage)							
	1 Final Examination 40%							
	2 Mid-Term Examination 30%							
	3 Class Activities: Quiz, Homework, etc. 30%							

	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.					
Media employed	Boards, projectors.					
Reading List	 William Adkins and Steven H. Weintraub, 1992, Algebra An Approach via Modu Theory, Springer-Verlag, Serge Lang, 1965, Algebra, Addison-Wesley Publishing Company, Massachusetts. Thomas W. Hungerford, 1974, Algebra, Springer-Verlag, New York. Saunders MacLane, Garrett Birkhoff, 1979, AlgebraSecond Edition, Macmilla Publishing Co., New York 					

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			v			v
CO 2			v			V			V
CO 3			v			V			V
CO 4			v			v			V