

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics

Telp	: +62 274 552243
Email	: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
	sekprodi-s1-matematika.mipa@ugm.ac.id
Website	: http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

NC 1.1						
Module name	Introductory Control Theory					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-3312					
Subtitle, if applicable						
Courses, if applicable	Introductory Control Theory					
Semester(s) in which the	6 th (sixth)					
module is taught						
Person responsible for the	Chair of the Lab. of Applied Mathematics					
module						
Lecture(s)	Dr. Ari Suparwanto, M.Si.					
Language	Bahasa Indonesia					
Relation to curriculum	Bachelor Degree, Elective, 6th semester					
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.					
hours	L L L L L L L L L L L L L L L L L L L					
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per					
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual					
	study per week, in total is 16 weeks per semester, including mid exam and final exam.					
Credit points	3					
Requirements according to	Students have taken Introductory Control Theory course (MMM-3312) and have an					
the examination regulations	examination card where the course is stated on.					
Recommended prerequisites	Students have taken the module of Introduction to System Theory (MMM-3310) and					
1 1	have participated in the final exam of the module.					
Module objectives/intended	After completing this course the students have ability to :					
learning outcomes	CO 1. analyze control theory problems, the open-loop and closed-loop control and					
0	determine the feedback control and the observer design.					
	CO 2. analyze the separation principle of feedback control and the observer.					
	CO 3. solve the decoupling problem by state feedback.					
	CO 4. Apply some methods to determine the solution of the open-loop and closed-					
	loop linear quadratic optimal control.					
Content	Models of open-loop and closed-loop (feedback) controller. Feedback control and pole					
	placement. Observers. The separation principle. Decoupling by State Feedback. The					
	open-loop linear quadratic optimal control. Lyapunov equation. The closed-loop linear					
	quadratic regulator. The Riccati differential equations. The steady state linear quadratic					
	regulator. The algebraic Riccati equations.					
Study and examination	The final mark will be weighted as follows:					
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)					
examination	1 Final Examination 40%					
	2 Mid-Term Examination 30%					
	3 Quiz and Homework (Project) 30%					
	The initial cut- off points for grades A, B, C, and D should not be less than 80%,					
	70%, 50%, and 40%, respectively.					
Media employed	Board, LCD Projector, Laptop/Computer					
Reading List	1. Frank Lewis, 1992, <i>Applied Optimal Control</i> , Prentice Hall International.					
	2. Huibert Kwakernaak and Raphel Sivan, 1972, <i>Linear Optimal Control Systems</i> , Wiley,					
	Interscience Division of John Wiley and Sons.					

3.	Katsuhiko Ogata, 1990, Modern Control Engineering, 2nd ed. Englewood Cliffs, N.J.; Prentice
	Hall, Inc.
4.	Chen, CT., 1984, "Linear Systems Theory and Design", CBS College Publishing, New York.
5.	Olsder, G.J., 1994, "Mathematical Systems Theory", VSSD, The Netherlands.

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1									
CO 2				\checkmark	\checkmark				
CO 3									
CO 4									