

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

 Undergraduate Programme in Mathematics

 Telp
 : +62 274 552243

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Analysis II							
Module level, if applicable	Bachelor							
Code, if applicable	MMM-3102							
Subtitle, if applicable	-							
Courses, if applicable	Introduction to Analysis II							
Semester(s) in which the	6 th (sixth)							
module is taught								
Person responsible for the	Chair of the Lab. Analysis							
module								
Lecturers	Prof. Dr. Ch. Rini Indrati, M.Si.							
	Atok Zulijanto, S.Si., M.Si., Ph.D.							
Language	Bahasa Indonesia							
Relation to curriculum	Compulsory course in the third year (6th semester) Bachelor Degree							
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.							
hours	r · · · · · · · · · · · · · · · · · · ·							
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per							
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual							
	study per week, in total is 16 weeks per semester, including mid exam and final exam.							
Credit points 3								
Requirements according to	Students have taken Introduction to Analysis II course (MMM-3102) and have an							
the examination regulations	examination card where the course is stated on.							
Recommended prerequisites	Students have taken Introduction to Analysis I course (MMM-3101) and have							
	participated in the final exam of the module.							
Module objectives/intended	After completing this course, the students should have:							
learning outcomes	CO 1. ability to prove and to determine the convergence of sequences of real-valued							
	functions and its properties.							
	CO 2. ability to demonstrate understanding of abstract concepts in analysis and to							
	construct simple but rigorous mathematical argument and express correctly							
	statements in metric spaces.							
	CO 3. ability to prove some standard theorems on topics in metric spaces.							
	CO 4. ability to use the concepts in metric spaces to solve some problems related to							
	metric spaces.							
Content	Sequence of real-valued functions: pointwise convergence and uniform convergence of							
	a sequence of real-valued functions and their applications.							
	Metric spaces: the definition of metric spaces, neighborhoods, interior points, limit							
	points, closure points, boundary points, open sets, closure, closed sets, subspaces,							
	separability, sequences in metric spaces, complete metric spaces, continuity of functions							
	on metric spaces, compactness, Heine-Borel Theorem. Normed spaces: Definition of normed spaces, relation of normed spaces and metric							
Study and avamination	spaces. The final mark will be weighted as follows:							
Study and examination requirements and forms of	Ű							
examination	NoAssessment methods (components, activities)Weight (percentage)1Final Examination45%							
Chairmation	11145%2Mid-Term Examination30%							
	2Mid-Term Examination30703Class Activities: Quiz, Homework, etc.25%							
	5 Onos neuvines. Quiz, nonework, etc. $25/0$							

	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.					
Media employed	Board					
Reading List	 Robert G. Bartle and Donald R. Sherbert, 2011, Introduction to Real Analysis, 4th Edition, John Wiley and Sons, USA. Halsey L. Royden, and Patrick M. Fitzpatrick, 2010, Real Analysis, 4th Edition, Prentice Hall. Walter Rudin, 1976, Principles of Mathematical Analysis, McGraw-Hill Kogakusha, Ltd, Tokyo. 					

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v				v		v
CO 2			v			V	V		V
CO 3			v				V		V
CO 4			V				v		V