

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara BulaksumurYogyakarta 55281Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics Telp : +62 274 552243 Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id

Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Linear Algebra							
Module level, if applicable	Bachelor							
Code, if applicable	MMM-2202							
Subtitle, if applicable	-							
Courses, if applicable	Linear Algebra							
Semester(s) in which the	4 th (fourth)							
module is taught								
Person responsible for	Chair of the Lab. of Algebra							
the module								
Lecture	Dr. Ari suparwanto, M.Si.							
Language	Bahasa Indonesia							
Relation to curriculum	Compulsory course in the second year (4th semester) Bachelor Degree							
Type of teaching, contact	100 minutes lecturers and 120 minutes structured activities (homework and task) per week.							
hours								
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week							
	for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per							
	week, and 170 minutes laboratory work per week, in total is 16 weeks per semester,							
	including mid exam and final exam.							
Credit points	3							
Requirements according	Students have taken Linear Algebra course (MMM-2202) and have an examination card							
to the examination	where the course is stated on.							
regulations								
Recommended	Students have taken the module of Elementary Linear Algebra (MMM-1202), Introduction							
prerequisites	to Algebraic Structure II (MMM-2201), and have participated in the final exam of the							
	module.							
Module	After completing this course the students have:							
objectives/intended	CO I. ability to do mathematical proof in connection with some concept in linear algebra							
learning outcomes	CO 2 problem solving skills by using procedures in linear algebra							
	00 2. problem solving skins by using procedures in incar algebra.							
Content	a. Vector Spaces, Subspace, linear combinations, Spanning Sets and Linear Independence,							
	Basis and Dimension.							
	b. Linear Transformation, Kernel and Image, the Matrix of Linear Transformation,							
	Similarity.							
c. Inner Product Spaces, Norm and Distance, Orthogonality, Orthogonal dan								
	Orthonormal Basis, Gram-Schmidt Orthogonalization Process.							
	d. Invariant Subspaces, Direct Sums, the Cayley-Hamilton Theorem.							
Study and examination	The final mark will be weighted as follows:							
requirements and forms	No Assessment methods (components, activities) Weight (percentage)							
of examination	$\begin{array}{ccc} 1 & \text{Final Examination} & 40\% \\ 2 & \text{Minimize} & 7\% \\ \end{array}$							
	2 Mid-Term Examination 30%							
	5 Uass Activities: Quiz, Homework, etc. 50%							
	The initial cut off points for grades A B C and D should not be less than $900/-700/$							
	50% and 40% respectively							
Modia omployed	Board ICD Projector Lapton/Computer							
media empioyed	Doard, LCD Trojector, Laptop/ Computer							

Reading List	1.	Gilbert Strang, 2016, Linear Algebra, Fifth Edition, Wellesley-Cambridge Press.
		U.S.
	2.	David C. Lay, Stephen R. Lay, Judi J. McDonald, 2015, Linear Algebra and Its
		Applications, Pearson Education Limited.
	3.	Howard Anton and Chris Rorres, 2014, Elementary Linear Algebra: With Supplemental
		Applications, John Wiley and Sons Inc.
	4.	David C. Lay, 2012, Linear Algebra and Its Applications, 4th Edition Linear Algebra and Its
		Applications, Addison Wesley.
	5.	Keith Nicholson, 2001, Elementary Linear Algebra, McGraw-Hill Book Co., Singapore.
		http://web.stanford.edu/class/nbio2281/handouts/Linear%20Algebra David%20Lay.pdf
	6.	Carl D. Meyer, 2000, Matrix Analysis and Applied Linear Algebra, SIAM
		http://saba.kntu.ac.ir/eecd/sedghizadeh/Ebooks/Matrix_Analysis.pdf
	7.	Morton L. Curtis, 1990, Abstract Linear Algebra, Springer-Verlag, New York.
	8.	Bill Jacob, 1990, Linear Algebra, W.H. Freeman and Co., New York.
	9.	Serge Lang, 1972, Linear Algebra, Addison-Wesley Publishing Co., London.

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			v			v
CO 2			v						