UNIVERSITAS GADJAH MADA
Faculty of Mathematics and Natural Sciences
Mathematics Department
Sekip Utara BulaksumurYogyakarta 55281Telp: +62 274552243 Fax: +62 274555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics
Telp
Email
: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
sekprodi-s1-matematika.mipa@ugm.ac.id
Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Linear Algebra
Module level, if applicable	Bachelor
Code, if applicable	MMM-2202
Subtitle, if applicable	-
Courses, if applicable	Linear Algebra
Semester(s) in which the module is taught	$4^{\text {th }}$ (fourth)
Person responsible for the module	Chair of the Lab. of Algebra
Lecture	Dr. Ari suparwanto, M.Si.
Language	Bahasa Indonesia
Relation to curriculum	Compulsory course in the second year (4 ${ }^{\text {th }}$ semester) Bachelor Degree
Type of teaching, contact hours	100 minutes lecturers and 120 minutes structured activities (homework and task) per week.
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual study per week, and 170 minutes laboratory work per week, in total is 16 weeks per semester, including mid exam and final exam.
Credit points	3
Requirements according to the examination regulations	Students have taken Linear Algebra course (MMM-2202) and have an examination card where the course is stated on.
Recommended prerequisites	Students have taken the module of Elementary Linear Algebra (MMM-1202), Introduction to Algebraic Structure II (MMM-2201), and have participated in the final exam of the module.
Module objectives/intended learning outcomes	After completing this course the students have: CO 1. ability to do mathematical proof in connection with some concept in linear algebra CO 2 . problem solving skills by using procedures in linear algebra.
Content	a. Vector Spaces, Subspace, linear combinations, Spanning Sets and Linear Independence, Basis and Dimension. b. Linear Transformation, Kernel and Image, the Matrix of Linear Transformation, Similarity. c. Inner Product Spaces, Norm and Distance, Orthogonality, Orthogonal dan Orthonormal Basis, Gram-Schmidt Orthogonalization Process. d. Invariant Subspaces, Direct Sums, the Cayley-Hamilton Theorem.
Study and examination requirements and forms of examination	
Media employed	Board, LCD Projector, Laptop/Computer

Reading List	1. Gilbert Strang, 2016, Linear Algebra, Fifth Edition, Wellesley-Cambridge Press. U.S. 2. David C. Lay, Stephen R. Lay, Judi J. McDonald, 2015, Linear Algebra and Its Applications, Pearson Education Limited. 3. Howard Anton and Chris Rorres, 2014, Elementary Linear Algebra: With Supplemental Applications, John Wiley and Sons Inc. 4. David C. Lay, 2012, Linear Algebra and Its Applications, 4th Edition Linear Algebra and Its Applications, Addison Wesley. 5. Keith Nicholson, 2001, Elementary Linear Algebra, McGraw-Hill Book Co., Singapore. http:// web.stanford.edu/class/nbio2281/handouts/Linear\%20Algebra David\%20Lay.pdf 6. Carl D. Meyer, 2000, Matrix Analysis and Applied Linear Algebra, SIAM http://saba.kntu.ac.ir/eecd/sedghizadeh/Ebooks/Matrix Analysis.pdf 7. Morton L. Curtis, 1990, Abstract Linear Algebra, Springer-Verlag, New York. 8. Bill Jacob, 1990, Linear Algebra, W.H. Freeman and Co., New York. 9. Serge Lang, 1972, Linear Algebra, Addison-Wesley Publishing Co., London.

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			V			
CO 2			v						

