

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics

: +62 274 552243

: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Calculus I				
Module level, if applicable	Bachelor				
Code, if applicable	MMM-1101				
Subtitle, if applicable	-				
Courses, if applicable	Calculus I				
Semester(s) in which the	1st (first)				
module is taught	1 (III)				
Person responsible for the	Chair of the Lab. Analysis				
module	Simil of the Bust Findy of				
Lecturers	Prof. Dr. Supama, M.Si.				
	Prof. Dr. Ch. Rini Indrati, M.Si.				
	Drs. Yusuf, MA.				
	Atok Zulijanto, S.Si., M.Si., Ph.D.				
	Nur Khusnussaadah, S.Si., M.Sc.				
	Prof. Dr.Widodo, MS.				
	Dr. Salmah, M.Si.				
	Dr. Budi Surodjo, M.Si.				
	Dwi Ertiningsih, M.Si.				
Language	Bahasa Indonesia				
Relation to curriculum	Compulsory course in the first year (1st semester) Bachelor Degree				
Type of teaching, contact	t 150 minutes lectures and 180 minutes structured activities per week.				
hours					
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per				
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual				
	study per week, in total is 16 weeks per semester, including mid exam and final exam.				
Credit points	3				
Requirements according to	Students have taken Calculus I course (MMM-1101) and have an examination card				
the examination regulations	where the course is stated on.				
Recommended prerequisites	Students should be proficient in elementary algebra				
Module objectives/intended	After completing this course the students should have:				
learning outcomes	CO 1. ability to understand the fundamental concepts of one variable calculus such as				
	functions, limit, derivative, differential, and its geometry interpretation.				
	CO 2. ability to solve the standard problems on calculus such as properties on real				
	numbers, functions, limit, and derivative.				
	CO 3. ability to apply the concepts of calculus to solve problems in mathematics and sciences especially related to optimization problems.				
	CO 4. ability to use limit and derivative to obtain the information about a function such				
	as increasing or decreasing, concavity, extreme points, inflection points,				
	including sketching its graph.				
	CO 5. ability to determine the Taylor series and Mac-Laurin series of a function.				
Content	The course will cover about the system of real numbers, functions and their graph, the				
	limit of a function, continuity, the derivative, the geometric interpretation of the				
	derivative, higher-order derivatives, the Mean Value Theorem, L'Hospital's rule				
	theorem of extreme value, applications of extreme problem, increasing and decreasing				

	functions, concavity, inflection points, sketching the graph of functions, Taylor and MacLaurin series.					
Study and examination	The final mark will be weighted as follows:					
requirements and forms of	No Assessment methods (components, activities)	Weight (percentage)				
examination	1 Final Examination	40%				
	2 Mid-Term Examination	30%				
	3 Class Activities: Quiz, Homework, etc.	30%				
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.					
Ponding List	Board, LCD Projector, Laptop/Computer 1. James Stewart, 2015, Calculus: Early Transcendentals Single Variable 8th Ed., Willey, USA					
Reading List	2. Robert A. Adam and Christopher Essex, 2010, Calculus, A Complete Course, Pearson.					
	3. James Stewart, 1999, Calculus, 4th edition, Brooks/Cole Pub. Comp.					
	4. Abe Mizrahi and Michael Sullivan, 1990, Calculus and Analytic Geometry, Wadsworth					
	5. Tim Pengajar Kalkulus, Diktat Kuliah Kalkulus I, FMIPA UGM.					

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		V					V		
CO 2		V					V		
CO 3		V			v				
CO 4		V					V		
CO 5		V							