

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email

: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

sekprodi-s1-matematika.mipa@ugm.ac.id
Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Advanced Calculus						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-2111						
Subtitle, if applicable	-						
Courses, if applicable	Advanced Calculus						
Semester(s) in which the	4 th (fourth)						
module is taught							
Person responsible for the	Chair of the Lab. of Analysis						
module							
Lecturer	Drs. Yusuf, M.A.						
Language	Indonesia						
Relation to curriculum	Compulsary course in the second year (4th semester) Bachelor Degree						
Type of teaching, contact	100 minutes lectures and 120 minutes structured activities (homework and task) per						
hours	week.						
Workload	Total workload is 90.67 hours per semester, which consists of 100 minutes lectures						
	per week for 14 weeks, 120 minutes structured activities per week, 120 minutes						
	individual study per week, in total is 16 weeks per semester, including mid exam and final exam.						
	IIII EXAIII.						
Credit points	2						
Requirements according to	Students have taken Advanced Calculus course (MMM-2111) and have an						
the examination regulations	examination card where the course is stated on.						
Recommended prerequisites	Students have taken Calculus II course (MMM-1102) and have participated in the						
	final examination of the course.						
Module objectives/intended	After completing this course, the students:						
learning outcomes	CO 1. have ability to investigate the divergence or convergence of real number series.						
	CO 2. have ability to determine the convergence interval of power series.						
	CO 3. have ability to identify the Riemann integrability of a function according to						
	definition and its properties.						
	CO 4. have ability to determine the primitive of Riemann integrable function and its						
	properties.						
	CO 5 have ability to prove some basic properties of the comme and beta functions						
Content	CO 5. have ability to prove some basic properties of the gamma and beta functions. Series: definition, algebra operation, convergence, series with positive terms,						
Content	convergence tests, radius of convergence, absolute convergence and conditional						
	convergence, alternating series, rearrangement of series terms.						
	Riemann integral: partition, length of partition, upper and lower Riemann integral,						
	Riemann integral and its properties, Darboux integral, primitive of Riemann						
	integrable function and its properties, integral as upper bound function. Gamma and						
	Beta functions.						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	Final Examination 45%						
	2 Mid-Term Examination 30%						
	3 Class Activities: Quiz, Homework, etc. 25%						
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,						
L	1 0 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						

	50%, and 40%, respectively.							
Media employed	White-board, Laptop, LCD Projector							
Reading List	 John Srdjan Petrovic, 2014, Advanced Calculus: Theory and Practice (Textbooks in Mathematics) 1st Edition, CRC Press, Taylor & Francis Group. Robert G. Bartle and Donald R. Sherbert, 2011, Introduction to Real Analysis, 4th Edition, John Wiley and Sons. Angus E. Taylor, 1989, Advanced Calculus, Blaisdell. William R. Parzynski, and Philip W. Zipse, 1982, Introduction to Mathematical Analysis, McGraw-Hill Book Company, New York. 							

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		V	V						
CO 2			V			V			V
CO 3		V	V						
CO 4			V			V			
CO 5							V		V