

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

Telp Email : +62 274 552243

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Differential Geometry							
Module level, if applicable	Bachelor							
Code, if applicable	MMM-3107							
Subtitle, if applicable	-							
Courses, if applicable	Introduction to Differential Geometry							
Semester(s) in which the	6 th (Sixth)							
module is taught								
Person responsible for the	Chair of the Lab. of Analysis							
module								
Lecturer	Dr. Fajar Adi Kusumo, M.Si.							
Language	Bahasa Indonesia							
Relation to curriculum	Bachelor Degree, Elective Course, 6th semester							
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.							
hours								
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures pe							
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual							
	study per week, in total is 16 weeks per semester, including mid exam and final							
Credit points	3							
Requirements according to	Students have taken Introduction to Geometry Differential course (MMM-3107) and							
the examination regulations	have an examination card where the course is stated on.							
Recommended prerequisites	Students have taken Multivariable Calculus I course (MMM-2109) and have							
	participated in the final examination of the course.							
Module objectives/intended	After completing the course, the student will have :							
learning outcomes	CO1. Ability to work with the concept of the Euclidean space which is based on the							
	tangent vector.							
	CO2. ability to describe the method of the moving frames and Isometry							
	CO3. ability to compute the T-N-B Frames.							
	CO4. ability to compute the tangent map and orientation on rigid motion of space.							
	CO5. ability to analyze come cases which can be seen as applications of the							
	Differential Geometry.							
Content	Topics:							
	a. Calculus on Euclidean Space: Tangent Vector, Directional Derivative of the \mathbb{R}^3 4 \mathbb{R}^3							
	tangent vector, Curves in K ^o , 1-Form, Differential Form, Mapping.							
	D. Frame Field: Dot product of Vector Space, Reparameterization of the Curve,							
	Frenet Formulas, Arbitrary-Speed Curves, Covariant Derivative, Frame Field,							
	Connection Form, Structural Equation.							
	c. Euclidean Geometry: Isometries of K [*] , The Tengent Map of an Isometry,							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components activities) Weight (percentage)							
examination	1 Final Examination 45%							
examination	2 Mid-Term Examination 30%							
	3 Class Activities: Ouiz Homework etc 25%							
	The initial cut-off points for grades A B C and D should not be less than 80% 70%							
	50%, and 40%, respectively.							

Media employed	White/Black Board, LCD Projector, Laptop/Computer						
Reading List	 Barrett O'Neill, 2006, Elementary Differential Geometry, Elsevier. John A. Thorpe, 1979, Elementary Topics in Differential Geometry, Springer-Verlag New York, Inc. 						

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			v			
CO 2			V			V			
CO 3			V						V
CO 4			V						V
CO 5			V			V			