

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email

: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

sekprodi-s1-matematika.mipa@ugm.ac.id
Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Calculus II								
Bachelor								
MMM-1102								
-								
Calculus II								
2^{nd} (second)								
Chair of the Lab. of Analysis								
Team								
Bahasa Indonesia								
Compulsory course in the first year (2nd semester) Bachelor Degree								
150 minutes lectures and 180 minutes structured activities per week.								
Total workload is 136 hours per semester, which consists of 150 minutes lectures per								
week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual								
study per week, in total is 16 weeks per semester, including mid exam and final ex-								
3								
Students have taken Calculus II course (MMM-1102) and have an examination card								
where the course is stated on.								
Students have taken Calculus I (MMM-1101) and have participated in the final								
examination of the course.								
After completing this course the students should have :								
1. CO 1. ability to solve indefinite integral problems with suitable methods.								
2. CO 2. ability to determine the integral value of a function on interval [a, b] by								
using the definition of the definite integral.								
3. CO 3. ability to use the Fundamental Theorem of Calculus and Change of								
Variable method in integration.								
4. CO 4. ability to characterize and solve the improper integral.								
5. CO 5. ability to apply the definite integral to determine the area, volume of								
solids of revolution, arc length, area of surface of solids of revolution, center of								
mass, and moment of inertia.								
 Indefinite integral: definition, properties, methods. 								
The Definite integral: definition, properties, The Fundamental Theorem of								
Calculus, Change of Variable in a Definite Integral, Improper integrals.								
Applications of Integration: area, volume of solids of revolution, arc length,								
surface area of a solid of revolution, center of mass, Pappus-Guldin's								
Theorem, moment of inertia.								
The final mark will be weighted as follows:								
No Assessment methods (components, activities) Weight (percentage)								
1 Final Examination 35% – 45%								
2 Mid-Term Examination 30% – 35%								
3 Class Activities: Quiz, Homework, etc. 25% – 30%								
The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,								
50%, and 40%, respectively.								

Media employed	Board, LCD Projector, Laptop/Computer
Reading List	 Abe Mizrahi and Michael Sullivan, 1990, Calculus and Analytic Geometry, Wadsworth James Stewart, 1999, Calculus, 4th edition, Brooks/Cole Pub. Comp. Robert A. Adam and Christopher Essex, 2010, Calculus, A Complete Course, Pearson. Tim Pengajar Kalkulus, Diktat Kuliah Kalkulus II, FMIPA UGM.

PLO AND CO MAPPING

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		V					V		
CO 2		V					V		
CO 3		v					v		
CO 4		V							
CO 5					v		V		