

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

: +62 274 552243

Telp Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
 sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Multivariable Calculus I						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-2109						
Subtitle, if applicable	-						
Courses, if applicable	Multivariable Calculus I						
Semester(s) in which the	3 th (third)						
module is taught							
Person responsible for the	Chair of the Lab. of Analysis						
module							
Lecturer(s)	Prof. Dr. Ch. Rini Indrati, M.Si.						
	Atok Zulijanto, S.Si., M.Si., Ph.D.						
Language	Bahasa Indonesia						
Relation to curriculum	Compulsary course in the second year (3rd semester) Bachelor Degree						
Type of teaching, contact	100 minutes lectures and 120 minutes structured activities per week.						
hours							
Workload	Total workload is 90.67 hours per semester, which consists of 100 minutes lectures						
	per week for 14 weeks, 120 minutes structured activities per week, 120 minutes						
	individual study per week, in total is 16 weeks per semester, including mid exam and						
	final exam.						
Credit points	2						
Requirements according to	Students have taken Multivariable Calculus I course (MMM-2109) and have an						
the examination regulations	examination card where the course is stated on.						
Recommended prerequisites	Students have taken the module of Calculus II (MMM-1102) and Analytical Geometry						
	(MMM-1106) and have participated in the final exam of the module.						
Module objectives/intended	After completing this course, the students should have:						
learning outcomes	CO 1. ability to generalize the fundamental concepts of multivariable calculus such as						
	limit, partial derivative, differentiable, double and triple integrals.						
	CO 2. ability to solve problems on limit and derivative of functions of several,						
	double integrals, and triple integrals.						
	CO 3. ability to apply the concepts of multivaribles calculus effectively to solve						
	problems in mathematics such as optimization problems, Taylor series,						
	and volume of a solid.						
Content	- Topology of \mathbb{R}^n : distance, neighborhod, interior points, boundary points, limit						
	points, open sets, close sets, region.						
	- Function of several variables and its graph						
	Limit and continuity of functions of several variables						
	- Partial derivatives and its geometric interpretations, nigher partial derivatives,						
	differentiable, differential, partial derivatives of composite functions and implicit						
	functions, Taylor series of multivariable functions, maximum and minimum						
	problems with and without constraint.						
	- Multiple integrals and its applications: double integrals in cartesian and polar						
	coordinates, triple integrals in cartesian, cylindrical and spherical coordinates						
	double and triple integrals with transformation, volume of solids						
	double and unple integrais with transformation, volume of solids.						

Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	1 Final Examination 45%						
	2 Mid-Term Examination 30%						
	3 Class Activities: Quiz, Homework, etc. 25%						
	The initial cut off points for grades A, B, C, and D should not be less than 80%, 70%,						
	50%, and 40%, respectively.						
Media employed	Board, LCD Projector, Laptop/Computer						
Reading List	1. Angus E. Taylor, W. Robert Mann, 1989, Advanced Calculus, Blaisdell.						
Ŭ	2. Charles Dixon, 1981, Advanced Calculus, John Wiley						

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			V			V	V		V
CO 2		V					V		V
CO 3		V			V		V		V