

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

Telp Email : +62 274 552243

: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
 sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Algebraic Structure II							
Module level, if applicable	Bachelor							
Code, if applicable	MMM-2201							
Subtitle, if applicable	MININI-2201							
Courses, if applicable	- Introduction to Algebraic Structure II							
Semester(s) in which the	3 rd (third)							
module is taught	^{3rd} (Illird)							
Person responsible for the	Chair of Algebra Research Group							
module	Chair of Algebra Research Group							
Lecturer(s)	Prof. Dr. Sri Wahyuni							
Language Relation to curriculum	Bahasa Indonesia							
	Compulsary course in the second year (3 rd semester) Bachelor Degree							
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities (homework and task) per							
hours Workload								
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per							
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual							
	study per week, in total is 16 weeks per semester, including mid exam and final exam.							
Credit points								
Requirements according to	Students have taken Introduction to Algebraic Structure II course (MMM-2201) and							
the examination regulations	have an examination card where the course is stated on.							
Recommended prerequisites	Students have taken Introduction to Algebraic Structure I course (MMM-1203) and							
Madala altimationa /internalad	have participated in the final examination of the course.							
Module objectives/intended	Learning objectives:							
learning outcomes	On successful completion of this module, students will be able to:							
	CO1:							
	recognize and analize the basic the basic concept of rings as an algebraic structure							
	consisting of one set and two operation, and manipulating skills in applying basic							
	concepts, properties, techniques, and methods for ring developments.							
	CO2:							
	demonstrate knowledge of basic concept of a subring and ideal, and ring factor							
	from an ideal; forming an ideal generate by a subset of a ring, center of a ring,							
	character of a ring and nilpotent elements.							
	CO3:							
	derive and apply the concept of ring homomorphism, its kernel and image, and the							
	basic properties including monomorphism, epimorphism, isomorphism, and the							
	fundamental ring homomorphism theorem, and the uses.							
	CO4:							
	recognize and analize knowledge of basic concepts of zero divisor, inverse of an							
	element, integral domain and field, the relation between the integral domain and							
	field, construction of a field from an integral domain, prime ideal and maximal ideal							
	and its properties.							
	CO5:							
	demonstrate knowledge the concept of rings of polynomials over field, degree of a							
	polynomial, division algorithm, and its generalization to Euclidean domain, and							
	principal ideal domain.							

Content	Syllabus: The syllabus consist of							
	• Rings, examples, properties, and technics in contruction of new rins from given rings.							
	• Subring, ideal, and contruction of ring of quotients (ring factor) from an ideal. Ideal generated by a subset (generator). Center of rings, and nilpotent elements.							
	• Ring homomorphisms, kernel and image. Monomorphism, epimorphism, and isomorphisms. Fundamental ring homomorphism theorem and its uses.							
	• Zero divisor, inverse of an element, integral domain and field, the relation between integral domain and field, construction of a field from an integral domain (field of fractions), prime ideal and maximal ideal and its properties. Prime ideal, and maximal ideal.							
	• Rings of polynomials over field, degree of polynomial, division algorithm, and its generalization to Euclidean domain, and principal ideal domain.							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)							
examination	1 Final Examination 40%							
	2 Mid-Term Examination 30%							
	3 Class Activities: Quiz, Homework, etc. 30%							
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively							
Media employed	Board, LCD Projector, Laptop/Computer							
Reading List	1. John B. Fraleigh, 1999; A First Course in Abstract Algebra; Fourth Edition; Addison-							
	Wesley Publishing Company, Inc.							
	2. I. N. Herstein, 1975, Topics in Algebra, John Wiley and Sons Inc., New York							
	3. David S. Dummit, and Richard M. Foote, 1999, <i>Abstract Algebra</i> , 3 rd Ed., John Wiley							
	and Sons, Inc., New York							
	4. D.S. Malik, John M. Mordeson, and M.K. Sen, 1998, <i>Fundamental of Abstract</i> , Fourth Edition, Addison Wosley, Publishing Company, Jac							
	Edition, Addison-Wesley Publishing Company, Inc.5. Landin. J., 2010, <i>An Introduction to Algbraic Structure</i>, Dover Book on Mathematics,							
	New York							
	INCW I OIK							

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			v			v
CO 2			v			v			v
CO 3			v			v			v
CO 4			v			V			v
CO 5			v			V			V