

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email

Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id

Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Elementary Differential Equations					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-2301					
Subtitle, if applicable	-					
Courses, if applicable	Elementary Differential Equations					
Semester(s) in which the	3 rd (third)					
module is taught						
Person responsible for the	Chair of the Lab. of Applied Mathematics					
module						
Lecturers	Dr. Fajar Adi Kusumo, M.Si., Dr. Lina Aryati, M.S., Prof. Dr. Ch. Rini Indrati, M.Si.,					
	Dr. Imam Solekhudin, M.Si., Prof. Dr. Widodo, M.S., Dr. Sumardi, M.Si.					
Language	Bahasa Indonesia					
Relation to curriculum	Compulsary course in the second year (3rd semester) Bachelor Degree					
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities (homework and task) per					
hours	week.					
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per					
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual					
	study per week, in total is 16 weeks per semester, including mid exam and final exam.					
Credit points	3					
Requirements according to	Students have taken Elementary Differential Equations course (MMM-2301) and					
the examination regulations	have an examination card where the course is stated on.					
Recommended prerequisites	Students have taken Calculus II course (MMM-1102) and have participated in the					
	final examination of the course.					
	Before taking this course, students must have a good understanding about concepts					
	of limit, derivative, and integral.					
Module objectives/intended	Upon successful completion, students will have:					
learning outcomes	CO1. ability to solve the types of Ordinary Differential Equations (ODE), e.g.					
	separable differential equations, exact and non-exact differential equations,					
	linear differential equations, linear system of Differential Equations, etc.					
	CO2. ability to solve <i>n</i> -order linear differential equations.					
	CO3. ability to solve the differential equations about ordinary points using power					
	series.					
	CO4. ability to solve linear system of ODE using differential operator and matrices					
	methods.					
	CO5. Ability to prove some properties of Laplace transform and to apply the					
	properties of Laplace transform, then to solve differential equations with initial					
	conditions and linear systems with constant coefficients with initial conditions.					
Content	a. Introduction:					
	i. Motivation of emergence of differential equations from real life problems.					
	ii. Definition of differential equations and their solutions.					
	b. First order differential equations: separable equations, homogeneous equations,					
	exact equations and integrating factors, linear equations, Bernoulli's differential					
	equation.					
	c. Higher order linear differential equations: Reduction of order, nonhomogeneous					
	differential equations and their method of solutions-the method of undetermined					
	_					
	coefficients, the method of variation of parameters-, the method of differential					

	operators (optional), Cauchy-Euler equations.							
	d. Series solutions.							
	e. Systems of differential equations and their methods of solution.							
	*							
	f. Laplace transform and its applications for solving differential equations and							
	systems of differential equations.							
	g. Simple applications of differential equations.							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)							
examination	1 Final Examination 35							
	2 Mid-Term Examination 25							
	3 Presentation 20							
	4 Class Activities: Quiz, Homework, etc. 20							
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,							
	50%, and 40%, respectively.							
Media employed	White/Black Board, LCD Projector, Laptop/Computer, e-Learning via							
	http://elisa.ugm.ac.id							
Reading List	1. George F. Simmons and Steven G. Krantz, 2007, Differential Equations: Theory, Technique,							
	and Practice, McGraw-Hill International Edition, New York.							
	2. Shepley L. Ross, <i>Differential Equations</i> , 1984, J. Wiley, New York.							
	3. William E. Boyce, and Richard C. DiPrima, Elementary Differential Equations and							
	Boundary Value Problems, 2001, 7th Edition, J.Wiley, New York.							
	4. Robert L. Borelli, and Coutney S. Coleman, Differential Equations: A modeling perspective,							
	Preliminary Edition, John Wiley & Sons, 1996, New York.							

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		v	v		V	V		V	V
CO 2		V	v		V	V		V	
CO 3		V	v		V			V	
CO 4		V	V			V		V	V
CO 5		V	V			V		V	