

UNIVERSITAS GADJAH MADA
Faculty of Mathematics and Natural Sciences
Mathematics Department
Sekip Utara BulaksumurYogyakarta 55281Telp: +62 274 552243 Fax: +62 274 555131 Email: stat.fmipa@uem.ac.id Website: http://slstat.fmipa.ugm.ac.id/

Undergraduate Program in Statstics
Telp :+62 274 552243
Email :<u>s_kartiko@yahoo.com</u>stat.fmipa@ugm.ac.id
Website :<u>http://slstat.fmipa.ugm.ac.id/</u>

MODULE HANDBOOK

Module name	Pengantar Model Probabilitas (Introduction to Probability Modelling)						
Module level, if applicable	Bachelor						
Code, if applicable	MMS 2410						
Subtitle, if applicable	_						
Courses, if applicable	Pengantar Model Probabilitas (Introduction to Probability Modelling)						
Semester(s) in which	3/ second year						
themodule is taught	3/ second year						
Person responsible for	Prof. Dr. Sri Haryatmi Kartiko, M.Sc.						
themodule	1101. Dr. off Partyaum Raturo, 191.00.						
Lecture(s)	Dr. Gunardi, DrAbdurakhman, Prof. Dr. Sri HaryatmiKartiko, M.Sc.						
Language	Bahasa Indonesia						
Classification within the	Compulsory course/ Elective Studies						
Curriculum	Compulsory Course/ Execute Studies						
Teaching	3 hours lecture						
format /classhours per	5 Hours recture						
week during the							
semester:							
Workload	3 hours lectures, 3 hours structured activities, 3 hours individual study,						
	weeks per semester (including mid-term and final examinations), 144 hours						
	per semester.						
Credit points	3						
Requirements	MMS-1102 Kalkulus II (Calculus II)						
Module	By the end of this course, you should see improvement in your ability to:						
objectives/intended	CO 1. Calculate probability of event and conditional event						
learning outcomes	CO 2. Obtain the mean, variance, moment generating function of a						
	random variable including random variables with specific distribution						
	CO 3. Calculate quantity concerning with joint distribution						
	CO 4. Obtain the conditional mean and variance						
	CO 5. Obtain the transition probability matrix using Chapman						
	Kolmogorov equation						
Content	Sample space and event, Probability, Conditional Probability,						
	Independence, Random Variable, Expectation, Mean and Variance,						
	Moment Generating Function, Jointly distributed random variable,						
	Independent random variable, Conariance and variance of sum of random						
	variable, Contitional mean and conditional variance, Limit theorem,						
	Stochasic processes, Markov chain, Chapman-Kolmogorof equation						
Study and examination	The weight of assignments will be as follows:						
requirements and forms of	i. Quiz, homework 25%						
examination	ii. Mid semester exam 35%						
	iii. Final exam 40%						

	Grade scale:				
	A: 85 <score≤100< td=""></score≤100<>				
	A-: 80 <score≤85< td=""></score≤85<>				
	A/B: 75 <score≤80< td=""></score≤80<>				
	B+: 70 <score≤75< td=""></score≤75<>				
	B: 65 <score≤70< td=""></score≤70<>				
	B-: 60 <score≤65< td=""></score≤65<>				
	B/C: 55 <score≤60< td=""></score≤60<>				
	C+: 50 <score≤55< td=""></score≤55<>				
	C: 45 <score≤50< td=""></score≤50<>				
	C-: 40 <score≤45< td=""></score≤45<>				
	C/D: 35 <score≤40< td=""></score≤40<>				
	D+: 30 <score≤35< td=""></score≤35<>				
	D: 20 <score≤30< td=""></score≤30<>				
	E: 0≤score≤20				
Media employed	Slides and LCD projectors, whiteboards				
Reading List	 Ross, S.M., Introduction to Probability Models, Academic Press, 1997. 				
	Bain, L.J and Engelhart, M. Introduction To Probability and				
	Mathematical Statistics, Duxbury Press, 1992.				

CO and PLO mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
CO 1	х						
CO 2		X					
CO 3			X				
CO 4			X				
CO 5				X			