

## UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

## Undergraduate Programme in Mathematics Telp :+62 274 552243

Telp Email 

 Email
 : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id

 Sekprodi-s1-matematika.mipa@ugm.ac.id

 Website
 : http://s1math.fmipa.ugm.ac.id/

## **MODULE HANDBOOK**

| Module name                     | Introduction to Analysis I                                                                                                                                       |  |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Module level, if applicable     | Bachelor                                                                                                                                                         |  |  |  |  |  |  |  |
| Code, if applicable             | MMM-3101                                                                                                                                                         |  |  |  |  |  |  |  |
| Subtitle, if applicable         | -                                                                                                                                                                |  |  |  |  |  |  |  |
| Courses, if applicable          | Introduction to Analysis I                                                                                                                                       |  |  |  |  |  |  |  |
| Semester(s) in which the        | 5 <sup>th</sup> (fifth)                                                                                                                                          |  |  |  |  |  |  |  |
| module is taught                |                                                                                                                                                                  |  |  |  |  |  |  |  |
| Person responsible for the      | Chair of Analysis Laboratory                                                                                                                                     |  |  |  |  |  |  |  |
| module                          |                                                                                                                                                                  |  |  |  |  |  |  |  |
| Lecturer(s)                     | Prof. Dr. Supama, M.Si                                                                                                                                           |  |  |  |  |  |  |  |
|                                 | Drs. Yusuf, M.A.                                                                                                                                                 |  |  |  |  |  |  |  |
| Language                        | Indonesia                                                                                                                                                        |  |  |  |  |  |  |  |
| Relation to curriculum          | Compulsory course in the third year (5th semester) Bachelor Degree                                                                                               |  |  |  |  |  |  |  |
| Type of teaching, contact hours | 150 minutes lectures, 180 minutes structured activities.                                                                                                         |  |  |  |  |  |  |  |
| Workload                        | Total workload is 136 hours per semester, which consists of 150 minutes lectures per                                                                             |  |  |  |  |  |  |  |
|                                 | week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual                                                                            |  |  |  |  |  |  |  |
|                                 | study per week, in total is 16 weeks per semester, including mid exam and final exam.                                                                            |  |  |  |  |  |  |  |
| Credit points                   | 3                                                                                                                                                                |  |  |  |  |  |  |  |
| Requirements according to       | Students have taken Introduction to Analysis I course (MMM-3101) and have an                                                                                     |  |  |  |  |  |  |  |
| the examination regulations     | examination card where the course is stated on.                                                                                                                  |  |  |  |  |  |  |  |
| Recommended prerequisites       | Advanced Calculus.                                                                                                                                               |  |  |  |  |  |  |  |
| Module objectives/intended      | After completing this course, the students:                                                                                                                      |  |  |  |  |  |  |  |
| learning outcomes               | CO 1. have ability to determine limit points, interior points, and boundary points of sets, and indicate whether a set is open or closed.                        |  |  |  |  |  |  |  |
|                                 | CO 2. have ability to prove the convergence of sequences and the limits.                                                                                         |  |  |  |  |  |  |  |
|                                 | CO 3. have ability to prove the limit and the continuity of functions.                                                                                           |  |  |  |  |  |  |  |
|                                 | CO 4. have ability to prove properties relates to derivative and apply the derivative to                                                                         |  |  |  |  |  |  |  |
|                                 | Rolle's Theorem, Mean Value Theorem, and Taylor's Theorem.                                                                                                       |  |  |  |  |  |  |  |
| Content                         | • Real Numbers system R: properties of real numbers system, order relation,                                                                                      |  |  |  |  |  |  |  |
|                                 | absolute value, topology on $\mathbb{R}$ , completeness of $\mathbb{R}$ , nested interval.                                                                       |  |  |  |  |  |  |  |
|                                 | • Sequence of real numbers: convergence, monotonic sequences, Cauchy criteria,                                                                                   |  |  |  |  |  |  |  |
|                                 | relation between Cauchy criteria and convergence of sequences.                                                                                                   |  |  |  |  |  |  |  |
|                                 | <ul> <li>Limit of functions: definition and properties of limit.</li> </ul>                                                                                      |  |  |  |  |  |  |  |
|                                 | <ul> <li>Continuity: definition, properties of continuous functions, uniformly continuous,</li> </ul>                                                            |  |  |  |  |  |  |  |
|                                 | <ul> <li>Continuous, definition, properties of continuous functions, uniformity continuous,<br/>monotonic functions, invers functions, approximation.</li> </ul> |  |  |  |  |  |  |  |
|                                 | **                                                                                                                                                               |  |  |  |  |  |  |  |
|                                 | • Derivative: definition and properties of derivative, Rolle's Theorem, Mean Value Theorem, and Taylor's Theorem.                                                |  |  |  |  |  |  |  |
| Study and examination           | The final mark will be weighted as follows:                                                                                                                      |  |  |  |  |  |  |  |
| requirements and forms of       | No Assessment methods (components, activities) Weight (percentage)                                                                                               |  |  |  |  |  |  |  |
| examination                     | 1 Final Examination 45%                                                                                                                                          |  |  |  |  |  |  |  |
|                                 | 2 Mid-Term Examination 30%                                                                                                                                       |  |  |  |  |  |  |  |
|                                 | 3 Class Activities: Quiz, Homework, etc. 25%                                                                                                                     |  |  |  |  |  |  |  |
|                                 | The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.                                               |  |  |  |  |  |  |  |

| Media employed | White-board                                                                                                                                                                                                                                              |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reading List   | <ol> <li>Robert G. Bartle and Donald R. Sherbert, 2011, Introduction to Real Analysis, 4th<br/>Edition, John Wiley and Sons, USA.</li> <li>Halsey L. Royden, and Patrick M. Fitzpatrick, 2010, Real Analysis, 4th Edition,<br/>Prentice Hall.</li> </ol> |

## PI and CO Mapping

|             | PLO 1 | PLO 2 | PLO 3 | PLO 4 | PLO 5 | PLO 6 | PLO 7 | PLO 8 | PLO 9 |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| CO 1        |       |       | v     |       |       | v     | v     |       | v     |
| CO 2        |       |       | v     |       |       |       | V     |       | v     |
| CO 3        |       |       | v     |       |       |       | V     |       | V     |
| <b>CO</b> 4 |       |       | V     |       |       | V     | V     |       |       |