

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

: +62 274 552243

Telp Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Mathematical Models						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-3303						
Subtitle, if applicable	-						
Courses, if applicable	Introduction to Mathematical Models						
Semester(s) in which the	5 th (fifth)						
module is taught							
Person responsible for the	Chair of the Lab. of Applied Mathematics						
module							
Lecturers	Dr. Fajar Adi Kusumo, M.Si. and Dr. Irwan Endrayanto A., M.Sc.						
Language	Bahasa Indonesia						
Relation to curriculum	Compulsory course in the third year (5th semester) Bachelor Degree						
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities (homework and task) per						
hours	week.						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per						
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual						
	study per week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3						
Requirements according to	Students have taken Introduction to Mathematical Models course (MMM-3303) and						
the examination regulations	have an examination card where the course is stated on.						
Recommended prerequisites	Students have taken Introduction to Partial Differential Equations course (MMM-						
1 1	2310), Introduction to Probability Model course (MMM-2410), and have participated						
	in the final examination of the course.						
	Before taking this course, students must have a good understanding about the						
	concepts of differential equations (ODE and PDE), and some basic concepts on						
	Probability Model.						
Module objectives/intended	After completing this course, the students will have:						
learning outcomes	CO 1. ability to formulate the mathematical model due to the problems.						
CO 2. ability to connect the simple real problem with the concepts on							
	CO 3. ability to interpret the mathematical result on a model to the original						
	problems.						
	CO 4. ability to formulate some complex problems, e.g. physics problems, medical						
	problems, biological problems, etc., which are to be modeled.						
	CO 5. ability to interpret the results of the modeling analysis due to other disciplines.						
Content	Topics:						
	a. Motivation of Mathematical Modeling						
	b. Basic concept of Mathematical Modeling						
	c. Some simple mathematical models and their analysis.						
	d. Mathematical modeling based on the system of the differential equations						
	e. Mathematical modeling based on the probability and optimization.						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	1 Final Examination 35						
	2 Mid-Term Examination 25						
	3 Presentation 20						
	4 Class Activities: Quiz, Homework, etc. 20						
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,						
	50%, and 40%, respectively.						
	5070, and +070, respectively.						

Media employed	White/Black Board, LCD Projector, Laptop/Computer					
Reading List	1. B. Barnes, and G.R. Fulford, 2002, "Mathematical Modeling with Case Studies: A differential equation approach using mapple", Taylor & Francis, Inc, London.					
	2. F.R. Giordano, M.D. Weir, and W.P. Fox, 1977, "A First Course in Mathematical Modeling", Thomson Books/Cole, Australia.					
	3. Richard Haberman, 2003, "Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow", Prentice Hall Inc, Englewood Cliffs, New Jersey.					
	4. D.P. Maki, and M. Thompson, 1973, "Mathematical Models and Applications with Emphasis on The Social Life, and Management Sciences", Prentice Hall Inc, Englewood Cliffs, New Jersey.					
	5. Masatoshi Sakawa, 1993, "Fuzzy Sets and Interactive Multi Objective Optimization", Plenum Press, New York.					

PLO and CO Mapping

	LO 1	LO 2	LO 3	LO 4	LO 5	LO 6	LO 7	LO 8	LO 9
CO 1		v	V		V	v			v
CO 2		v	V		V	v	V		v
CO 3		v	V		V	v	V		v
CO 4		V	V		V	V	V		v
CO 5			V		V	v	V		