

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

Telp	: +62 274 552243
Email	: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
	sekprodi-s1-matematika.mipa@ugm.ac.id
Website	: http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Coding Theory					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-3206					
Subtitle, if applicable						
	- Later destion to Caline Theorem					
Courses, if applicable	Introduction to Coding Theory					
Semester(s) in which the	5 th (fifth)					
module is taught						
Person responsible for the module	Chair of the Lab. Algebra					
Lecturer(s)	Dr. Al. Sutjijana, M.Sc.					
	Dr.rer.nat. Indah Emiliana Wijayanti, M.Si.					
	Dr. Budi Surodjo, M.S.					
Language	Bahasa Indonesia					
Relation to curriculum	Bachelor Degree, Elective Course, 5th semester					
Type of teaching, contact	150 minutes lectures, 180 minutes structured activities per week.					
hours						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures for					
	14 weeks, 180 minutes structured activities per week, 180 minutes individual study per					
	week, in total is 16 weeks per semester, including mid exam and final exam.					
Credit points	3					
Requirements according to	Students have taken Introduction to Coding Theory course (MMM-3206) and have an					
the examination regulations	examination card where the course is stated on.					
Recommended prerequisites	Students have taken Linear Algebra course (MMM-2202) and have participated in the					
	final examination of the course.					
Module objectives/intended	After completing this course, the students should have:					
learning outcomes	CO 1. ability to prove the fundamental properties of coding theory such as					
C	encoding, decoding, block code, hamming distance, maximum likelihood					
	decoding, and nearest neighbour/minimum distance decoding.					
	CO 2. ability to construct finite fields, to prove its properties and to do calculation					
	related to finite field.					
	CO 3. ability to find a generator matrix and a parity-check matrix of a linear code.					
	CO 4. ability to decode linear codes (standard array decoding, syndrome decoding) and					
	some special linear codes, such self- dual code, and cyclic code.					
Content	a. Introduction, basic theory and some over view of applications of Error Correcting					
	Codes, Communication channels, maximum likelihood decoding, Hamming					
	distance, nearest neighbor decoding, distance of a code.					
	b. Fields, Polynomials rings, structure of finite fields, minimal polynomials.					
	c. Linear Codes, Hamming weight, bases for linear code, Generator matrix and parity					
	check matrix, equivalence code, encoding and decoding of linear code, cosets, nearest					
	neighbor decoding, syndrome decoding, Cyclic Codes.					
Study and examination	The final mark will be weighted as follows:					
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)					
examination	1 Final Examination 40%					
	2 Mid-Term Examination 30%					
	3 Class Activities: Quiz, Homework, etc. 30%					

	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,				
	50%, and 40%, respectively.				
Media employed White/Black Board, LCD Projector, Laptop/Computer					
Reading List	1. Scott A. Vanstone, Paul C van Oorschot, P.C.V., 1989, An Introduction to Error				
	Correcting Codes with Application, Kluwer Academic Publishers.				
	2. San Ling and Chaoping Xing, 2004, Coding Theory A First Course, Cambridge				
	University Press.				

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v		v		V		v
CO 2		V			V				
CO 3		v			V	v			
CO 4		V			v	v			