

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara BulaksumurYogyakarta 55281Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

Telp	: +62 274 552243
Email	: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
	sekprodi-s1-matematika.mipa@ugm.ac.id
Website	: http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Cryptography					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-4206					
Subtitle, if applicable	-					
Courses, if applicable	Introduction to Cryptography					
Semester(s) in which the	7 th (seventh)					
module is taught						
Person responsible for the	Algebra Research Group					
module						
Lecture	Dr. Diah Junia Eksi Palupi, MS					
Language	Bahasa Indonesia					
Relation to curriculum	Elective Course					
Type of teaching, contact	150 minutes lectures per week, 180 minutes supervised activities per week, 180					
hours	minutes individual learning per week.					
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per					
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual					
	study per week, in total is 16 weeks per semester, including mid exam and final exam.					
Credit points	3					
Requirements according to	Students have taken Introduction to Cryptography course (MMM-4206) and have an					
the examination regulations	examination card where the course is stated on.					
Recommended prerequisites	Students have taken Introduction to Linear Algebra course (MMM-2202) and have					
Recommended prerequisites	participated in the final examination of the course.					
Module objectives/intended						
learning outcomes	Upon successful completion,					
learning outcomes	CO 1. Students are able to comprehend the cryptosystem and to construct the ciphermodel of a problem.					
	CO 2. Students are able to comprehend the cryptanalysis and to apply for some populer					
	ciphers.					
	CO 3. Students are able to comprehend the Multicryptosystem and to build the					
	cryptosystem of some famous systems. CO 4. Students are able to comprehend some kind public-key systems and to					
	implement to solve some daily problems.					
	CO 5. Students are able to comprehend a secret scheme and to implement for some					
	familiar systems.					
Content	Cryptology, cryptosystem and cryptanalysis. Cipher; Shift, Substitution, Affine,					
Content						
	Vigenere, Hill, Permutation, Stream. Cryptanalysis of that ciphers. Multicryptosystem, Entropi and its properties, Block cipher, DES and AES, Hash function. Public key					
	cryptosystem RSA, Cina reminder theorem, prima test, EL Gamal, Elliptic curve. Signatures scheme of RSA and El Gamal.					
Study and examination	The final mark will be computed from a proportional weight of assignments, mid					
requirements and forms of	examination and final examination. The final mark will be weighted as follows:					
examination	No Assessment methods (components, activities) Weight (percentage)					
	1Final Examination40%2Mid Term Examination35%					
	2 Mid-Term Examination 35%					
	3 Class Activities: Quiz, Homework, etc. 25%					
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,					
	50%, and 40%, respectively.					

Media employed	Boards, projectors.
Reading List	1. E Douglas R. Stinson, 2002, Cryptography Theory and Practice, 2 nd Ed, A CRC
	Press Company, Boca Raton, London, New York, Washington DC.
	2. Johannes A. Buchmann, 2001, Introduction to Cryptografi, Springer-Verlag, New
	York, Berlin, Heidelberg.
	3. Wayne Patterson, 1987, Mathematical Cryptology for computer scientics and
	Mathematicians, Rowman & Littlefield, United States of America.
	4. Katz J., Lindell Y., 2015, Introduction to Modern Cryptography, 2nd Edition, CRC
	Press Taylor and Francis Group, U.S.
	5. Hoffstein, J., Pipher, J., Silverman, H.J., 2014, An Introduction to Mathematical
	Cryptography (Undergraduate Text in Mathematics), Springer Science-Bussines
	Media, New York

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		v			V				
CO 2		v	v		V				
CO 3			v		V				
CO 4			v		v				
CO 5			V	v	v	V			V