

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

Undergraduate Programme in Mathematics Telp : +62 274 552243

Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id

Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Operation Research						
	Bachelor						
Module level, if applicable	MMM-2311						
Code, if applicable	MININI-2311						
Subtitle, if applicable	-						
Courses, if applicable	Operation Research						
Semester(s) in which the	3 th (third)						
module is taught							
Person responsible for the	Chair of the Lab. of Applied Mathematics and Chair of the Lab. of Mathematic						
module	Computation						
Lecturer(s)	Dr. Indarsih, S.Si., M.Si.						
, ,	Dr. Irwan Endrayanto A, S.Si., M.Sc.						
Language	Bahasa Indonesia						
Relation to curriculum	Elective course in the second year (3th semester) Bachelor Degree						
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.						
hours							
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per						
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual						
	study per week, in total is 16 weeks per semester, including mid exam and final exam.						
Credit points	3(1)						
Requirements according to	Students have taken Operation Research course (MMM-2311) and have an						
the examination regulations	examination card where the course is stated on.						
Recommended prerequisites	Students have taken the module of Linear Programming (MMM-2312) and have						
	participated in the final exam of the module.						
Module objectives/intended	CO 1. Students are able to analyze models in operation research.						
learning outcomes	CO 2. Students are able to solve the models by their algorithms.						
	CO 3. Students are able to apply the models in real problems.						
	CO 4. Students are able to using software optimization to solve the models in						
	operation research.						
Content	Model, application and algorithm for transportation, transshipment, assignment, and						
	travelling salesman problem. Network models: shortest path problem, minimum						
	spanning tree, maximum flow and critical path method. Deterministic and probabilistic						
	dynamic programming. Inventory models. Queuing theory. Laboratory work.						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)						
examination	1. Final Examination 35						
	2. Mid-Term Examination 30						
	3. Quiz, Homework, Presentation, Laboratory work 35						
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,						
	50%, and 40%, respectively.						
Media employed	Projector, board, computer, e-learning via http://elisa.ugm.ac.id, win-QSB.						
Reading List [1] Hamdy A. Taha, 1998, Operation Research: an introduction, Collie							
	International Edition.						

[2]	David R. Anderson, Dennis J. Sweeney, and Thomas A. William, 1985, An
	Introduction to Management Sciences: Qualitative Approach to Decision Making, Fourth
	Edition, South Western Educational Publishing
[3]	Wayne L. Winston, 2004, Operation Research Application and Algorithms, Ruxbury
	Press.

- [4] John A. Lawrence and Barry A. Pasternack, 2006, Applied Management Science, John Wiley &Sons Inc.
- [5] Indarsih, 2016, Modul Praktikum Riset Operasi, Departemen Matematika,
- FMIPA, UGM.

CO and PLO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		V							
CO 2					v				
CO 3					v		V		v
CO 4				V					