

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics Telp :+62 274 552243

Telp Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to Optimization Theory					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-3309					
Subtitle, if applicable						
Courses, if applicable	- Introduction to Optimization Theory					
Semester(s) in which the	6 th (sixth)					
module is taught						
Person responsible for the	Chair of the Leb. of Applied Methometics					
module	Chair of the Lab. of Applied Mathematics					
Lecturer(s)	Prof. Dr. Salmah, M.Si					
	Bahasa Indonesia					
Language						
Relation to curriculum	Elective course in the third year (6 th semester) Bachelor Degree					
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.					
hours						
Workload	Total workload is 136 hours per semester, which consists of 150					
	minutes lectures per week for 14 weeks, 180 minutes structured					
	activities per week, 180 minutes individual study per week, in total is 16					
	weeks per semester, including mid exam and final exam.					
Credit points	3					
Requirements according to	Students have taken Introduction to Optimization Theory course					
the examination regulations	(MMM-3309) and have an examination card where the course is stated					
Recommended prerequisites	Students have taken Linear Programming course (MMM-2312) and					
	have participated in the final examination of the course.					
Module objectives/intended	After completing these course the students will be able:					
learning outcomes	CO1. to understand basic concept in non linear optimization					
	problems such as convex set, convex function and theorems					
	related to optimization problems with convex functions.					
	CO2. to solve optimization problems analitically such as					
	optimization problem without constraints, optimization					
	problem with equation constraints, and optimization					
	problems with inequalitu constraints.					
	CO3. to solve optimization problem numerically.					
	CO4. to apply the theory to find and interpret the solutions of some					
	optimization problem					
	CO5. to use computer program to solve optimization problems					
	numerically.					
Content	Topics include Euclidean space, convex sets, convex functions,					
	quadratic forms, real functions, gradient, directional derivative, local					
	and global extrema, unconstrained extrema, constrained extrema with					
	equation by Lagrange multiplier, constrained extrema with inequality by					

	Kuhn-Tucker theory, numerical methods: direct search, gradient method, Newton-Raphson method, numerical method for n- dimensional problem, numerical method for constrained extrema problem						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components, activities)	Weight					
examination		(percentage)					
	1 Final Examination	45%					
	2 Mid-Term Examination	30%					
	3 Class Activities: Quiz, Homework, etc.	25%					
	d not be less						
Media employed	Projector, board						
Reading List	 Mokhtar S Bazaraa, Hanif D. Sherali, C.M.Shetty, 2006, Nonlinear Programming. Theory and Algorithms 3rd Edition, John Wiley and Sons. K.V. Mital, 1993, Optimization Methods in Operations Research and Analysis, Wiley Eastern Ltd. Edwin K.P. Chong, dan Stanislaw H. Zak, 1996, An Introduction to Optimization, John Wiley & Sons. P. Venkataraman, 2002, Applied Optimization with MATLAB Programming, John Wiley and Sons. 						

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		v	v						
CO 2		v	v						
CO 3		v	v						
CO 4					v	V	v		v
CO 5				v		V			