

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics Telp :+62 274 552243

Telp Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id Website : http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Introduction to System Theory						
Module level, if applicable	Bachelor						
Code, if applicable	MMM-3310						
Subtitle, if applicable							
Courses, if applicable	Introduction to System Theory						
Semester(s) in which the	5 th (fifth)						
module is taught							
Person responsible for the	Chair of the Lab. of Applied Mathematics						
module							
Lecturer(s)	Prof. Dr. Salmah, M.Si.						
Language	Bahasa Indonesia						
Relation to curriculum	Elective course in the third year (5th semester) Bachelor Degree						
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.						
hours	*						
Workload	Total workload is 136 hours per semester, which consists of 150						
	minutes lectures per week for 14 weeks, 180 minutes structured						
	activities per week, 180 minutes individual study per week, in total is 16						
	weeks per semester, including mid exam and final exam.						
Credit points	3						
Requirements according to	Students have taken Introduction to System Theory course (MMM-						
the examination regulations	3310) and have an examination card where the course is stated on.						
Recommended prerequisites	Students have taken Linear Algebra course (MMM-2202), Elementary						
	Differential Equations course (MMM-2301), and have participated in						
	the final examination of the course.						
Module objectives/intended	After completing these course the students will be able:						
learning outcomes	CO1. to develop model of control problems into basic standard						
	state space form and input output system form.						
	CO2. to solve linear systems						
	CO3. to examine some properties of systems such as stability,						
	controllability and observability						
	CO4. to interpret the solutions of control system problems due to the						
	theory						
	CO5. to use computer program to solve linear systems and to						
<u>C</u>	The systems.						
Content	Topics include modeling aspect and state space form, linearization,						
	solution of intear differential equation system, impulse and step						
	inspired and observability, controllability and observability,						
Study and examination	The final mark will be weighted as follows:						
requirements and forms of	No Assessment methods (components activities) Weight						
examination	1 Final Examination 40%						

	2 Mid-Term Examination	30%				
	3 Class Activities: Quiz, Homework, etc	30%				
	The initial cut-off points for grades A, B, C, and D should not be than 80%, 70%, 50%, and 40%, respectively.					
Media employed	Projector, board					
Reading List	 Geert Jan Olsder, 1994, Mathematical Systems Theory, 1'st Edition University of Technology. 	, Delft				
	 Katsuhiko Ogata, 1990, Modern Control Engineering, 2nd ed. Engle Cliffs, N.J.,: Prentice Hall, Inc. 	ewood				
	3. Chi-Tsong Chen, 1999, <i>Linear System Theory And Design</i> , Third E Oxford University Press	Edition,				

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1					V				
CO 2			v						
CO 3			v						
CO 4					V	v	V		v
CO 5						V			