

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: <u>math@ugm.ac.id</u> Website: <u>http://math.fmipa.ugm.ac.id</u>

Undergraduate Programme in Mathematics

Telp	: +62 274 552243
Email	: maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id
	sekprodi-s1-matematika.mipa@ugm.ac.id
Website	: http://s1math.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Geometry in <i>n</i> -Dimensional Euclidean Space					
Module level, if applicable	Bachelor					
Code, if applicable	MMM-2115					
Subtitle, if applicable						
Courses, if applicable	- Competencie a Dimensional Euclidean Space					
Semester(s) in which the	Geometry in <i>n</i> -Dimensional Euclidean Space					
	3 th (third)					
module is taught						
Person responsible for the	Chair of the Lab. of Analysis					
module						
Lecturer(s)	Imam Solekhudin, Ph.D.					
Language	Bahasa Indonesia					
Relation to curriculum	Bachelor Degree, Elective Course, 3rd semester					
Type of teaching, contact	150 minutes lectures and 180 minutes structured activities per week.					
hours						
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per					
	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual					
	study per week, in total is 16 weeks per semester, including mid exam and final exam.					
Credit points	3					
Requirements according to	Students have taken Geometry in n-Dimensional Euclidean Space course (MMM-					
the examination regulations	2115) and have an examination card where the course is stated on.					
Recommended prerequisites	Students have taken Analytic Geometry course (MMM-1106) and have participated in					
	the final examination of the course.					
Module objectives/intended	After completing this course the students will have :					
learning outcomes	CO1. ability to generalize concepts in course analytic geometry into n dimensional					
C	Euclidean space.					
	CO2. ability to prove some theorems which are the generalization of the similar					
	theorems in the two and three-dimensional space analytic geometry.					
Content	a. n dimensional Euclidean Space ; Norm, Inner product, Orthonormal basis,					
	Direction numbers, Direction Cosines, Direction Angels, Orthogonal					
	Projection.					
	b. Line-n; Equations of Line-n, Angle between two lines-n, Distance from a point					
	to a line-n, Distance between two lines-n.					
	c. Hyperplane ; Hesse Equation, Distance from a point to a hyperplane, Normal					
	Equations, Angle between two hyperplanes, line-n and hyperplane.					
	d. Sphere-n: Equations, Tangent hyperplane, Power, circle-n, Bundle of spheres-					
	n.					
	e. Quadratic Equations: Ellipsoid n, Hyperboloid n, Paraboloid n, Quadratic					
	equation through 2n points.					
	equation unough 2n points.					
Study and examination	The final mark will be weighted as follows:					
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)					
examination	1 Final Examination 40					
Chammauon	111402Mid-Term Examination35					
	2Mid-Term Examination554Class Activities: Quiz, Homework, etc.25					
	+ Class Activities. Quiz, fiomework, etc. 25					

	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.					
Media employed	White/Black Board, LCD Projector, Laptop/Computer					
Reading List	 Duncan McLaren Young (D. M. Y.) Sommerville, 1959, Analytical Geometry of Three Dimensional, Cambridge University Press, London. Wilhelmus Johannes Vollewens, 1946, Repetitiedictaat Analytische Meetkunde, Delftche Uitgevers Maatschappij, Delft. Erwin Kreyzig, 1978, Introduction to Functional Analysis with Application, John Willey and Sons, Canada. 					

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v			V			
CO 2			v						V