

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Mathematics Department Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: math@ugm.ac.id Website: http://math.fmipa.ugm.ac.id

MODULE HANDBOOK

Undergraduate Programme in Mathematics Telp : +62 274 552243

Telp Email

Email : maths1@ugm.ac.id; kaprodi-s1-matematika.mipa@ugm.ac.id sekprodi-s1-matematika.mipa@ugm.ac.id

Website : http://s1math.fmipa.ugm.ac.id/

Module name	Geometry							
Module level, if applicable	Bachelor							
Code, if applicable	MMM-2113							
Subtitle, if applicable								
Courses, if applicable	Geometry							
Semester(s) in which the	3 rd (third)							
module is taught								
Person responsible for the	Chair of the Lab. of Analysis							
module								
Lecturer(s)	Moh. Tari, M.Si							
Language	Bahasa Indonesia							
Relation to curriculum	Bachelor Degree, Elective Course, 3rd semester							
Type of teaching, contact hours	150 minutes lectures and 180 minutes structured activities per week.							
Workload	Total workload is 136 hours per semester, which consists of 150 minutes lectures per							
WOLKIOACI	week for 14 weeks, 180 minutes structured activities per week, 180 minutes individual							
	study per week, in total is 16 weeks per semester, including mid exam and final exam.							
Credit points	3							
Requirements according to	Students have taken Geometry course (MMM-2113) and have an examination card							
the examination regulations	where the course is stated on.							
Recommended prerequisites	Students have taken Analytic Geometry course (MMM-1106), Intorduction to							
ricesimiended prerequisites	Mathematical Logic course (MMM-1208), and have participated in the final							
	examination of the courses.							
	Before taking this course, students must have a good understanding in mathematical							
	logic and some concepts of analytic geometry.							
Module objectives/intended	After completing this course the students will be able:							
learning outcomes	CO1. to comprehend the concept of abstract geometry, incidence geometry, metric							
	geometry, Pasch geometry, Poincare plane, Taxicab plane, and Euclid plane.							
	CO2. to apply some of concepts in analytic geometry into the planes above.							
Content	Topics:							
	a. Introduction:							
	i. Explanation of the contents of the course.							
	ii. References, scoring and grading.							
	b. Abstract geometry, incidence geometry, metric geometry, and Pasch geometry.							
	c. Poincare plane, Taxicab plane, and Euclid plane.							
	d. Missing strip plane, angle, Moulton plane, perpendicular and congruence, neutral							
	geometry, and congruence of triangle.							
Study and examination	The final mark will be weighted as follows:							
requirements and forms of	No Assessment methods (components, activities) Weight (percentage)							
examination	1 Final Examination 40							
	2 Mid-Term Examination 35							
	4 Class Activities: Quiz, Homework, etc. 25							
	The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%,							
	50%, and 40%, respectively.							

Reading List	1. Richard S. Millman and George D. Parker, 1991, Geometry: A Metric Approach with Models,
	Springer. 2. Edward C. Wallace and Stephen F. West, 2003, Roads to Geometry, 3rd Edition, Pearson.

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1		v	v						
CO 2		v	v						