

UNIVERSITAS GADJAH MADAFaculty of Mathematics and Natural Sciences

Mathematics Department
Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 552243 Fax: +62 274 555131 Email: stat.fmipa@ugmacid Website: http://slstat.fmipa.ugm.ac.id/

Undergraduate Program in Statistics
Telp : +62 274 552243
Email : stat.fmipa@ugm.ac.id; kaprodi-s1-statistika.mipa@ugm.ac.id
sekprodi-s1-statistika.mipa@ugm.ac.id
Website : http://s1stat.fmipa.ugm.ac.id/

MODULE HANDBOOK

Module name	Pengantar Teori Risiko Aktuaria 1 (Introduction to Actuarial Risk Theory 1)					
Module level, if applicable	Bachelor					
Code, if applicable	MMS-3432					
Subtitle, if applicable	-					
Courses, if applicable	-					
Semester(s) in which the	5 th Semester					
module is taught	J Jeniestei					
Person responsible for the						
module						
Lecture(s)	Danang Teguh Qoyyimi, M.Sc., Ph.D.					
Language	Bahasa Indonesia					
Classification within the	Compulsory course/ Elective Studies					
Curriculum						
Teaching format /class	3 hours lecture					
hours per week						
during the						
semester:						
Workload	3 hours lectures, 6 hours individual study, 14 weeks per semester, and					
	total 126 hours a semester					
Credit points	3					
Requirements	-					
Module	This course introduces a variety of useful frequency and severity models.					
objectives/intended	The students will be required to understand the steps involved in the					
learning outcomes	modeling process and how to carry out these steps in solving business					
	problems. Students should be able to: 1) analyze data from an application					
	in a business context; 2) determine a suitable model including parameter					
	values.					
	By the end of this course, students should be able to:					
	CO1 Apply the probability theory in modeling risks					
	CO2 Apply transformation in random variable to loss modifications					
	CO3 Compute aggregate claims distributions and use them to calculate					
	loss probabilities					
Content	1. Introduction: random variables, basic distributional quantities,					
	tails of distribution, measures of risk					
	2. Characteristic of actuarial model					
	3. Creating new distributions					
	4. Selected distributions and their relationship					
	5. Discrete distributions					

	6. Frequency and severity with coverage modifications							
	7. Aggregate loss models							
	This course will train the student in both knowledge and application							
	setting but give more portion to the knowledge.							
Study and xamination	The weight of assignments will be as follows:							
requirements and forms of								
examination	ii. Mid semester exam 35%							
	iii. Final exam 40%							
	Grade scale:							
	A: 85 <score≤100< td=""><td></td></score≤100<>							
	A-: 80 <score≤85< td=""><td></td></score≤85<>							
	A/B: 75 <score≤80< td=""><td></td></score≤80<>							
	B+: 70 <score≤75< td=""></score≤75<>							
	B: 65 <score≤70< td=""><td></td></score≤70<>							
	B-: 60 <score≤65< td=""></score≤65<>							
	B/C: 55 <score≤60< td=""><td></td></score≤60<>							
	C+: 50 <score≤55< td=""><td></td></score≤55<>							
	C: 45 <score≤50< td=""></score≤50<>							
	C-: 40 <score≤45< td=""><td></td></score≤45<>							
	C/D: 35 <score≤40< td=""></score≤40<>							
	D+: 30 <score≤35< td=""></score≤35<>							
	D: 20 <score≤30< td=""><td></td></score≤30<>							
	E: 0≤score≤20							
Media employed	Slides and LCD projectors, blackboards							
Reading List	1. Klugman, S. A., Panjer, H. H., dan Willmot G. E. (2012), Loss							
	Model: From Data to Decision 4th edition, Wiley							
	2. Bowers, N.L. Gerber, H.U., Hickman, J.C., Jones, D.A. and Ne	esbitt,						
	C.J.	,						
	(1997), Actuarial Mathematics, Society of Actuaries, 2nd Edition							

CO and PLO mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
CO 1	х						
CO 2		x					
CO 3				X			