Module Handbook

Module name: Numerical Linear Algebra
Module level, if applicable: Bachelor
Code, if applicable: MMM-3208
Subtitle, if applicable:
Courses, if applicable: Numerical Linear Algebra
Semester(s) in which the module is taught: 5th (fifth)
Person responsible for the module: Chair of the Lab. of Algebra and Chair of the Lab. of Mathematical Computation
Lecture(s): Dr. Ari Suparwanto, M.Si.
Language: Bahasa Indonesia
Relation to curriculum: Bachelor Degree, Elective, 5th semester
Type of teaching, contact hours: 150 minutes lectures, 180 minutes structured activities.
Workload: 150 minutes lectures, 180 minutes structured activities, 180 minutes individual study, 16 weeks per semester (including mid-term and final examinations), 136 hours per semester.
Credit points: 3(I)
Requirements according to the examination regulations: Students have taken Numerical Linear Algebra course (MMM-3208) and have an examination card where the course is stated on.
Recommended prerequisites: Students have taken Linear Algebra course (MMM-2202) and have participated in the final examination of the course.
Module objectives/intended learning outcomes: After completing this course, the students have ability to:
- **CO 1.** work on the decomposition of the matrix (LU factorization, Jordan Canonical Form, QR factorization, Main Axis Theorem, Schur Theorem, Cholesky Factorization, SVD, etc.).
- **CO 2.** do calculation using MATLAB due the topic under discussion.
- **CO 3.** find a solution of some real problems related to the topic under discussion.
Content:
- a. Triangular matrix and its properties, factorization L.U.
- b. Matrix Orthogonal and its properties, Diagonalization.
- c. Principle Axis Theorem, Theorem Schur, Factorization QR.
- d. Positive definite matrix and its properties, Factorization Cholesky.
- e. Matrix Hermit and matrix Unitary and its properties, Unitary Diagonalization.
- f. Singular Value Decomposition (SVD) and Polar Decomposition.
Study and examination requirements and forms of examination: The final mark will be weighted as follows:
- **No**: Assessment methods (components, activities)
- **Weight (percentage)**:
 1. Final Examination 30
 2. Mid-Term Examination 25
 3. Laboratory 25
 4. Class Activities: Quiz, Homework, etc. 20
The initial cut-off points for grades A, B, C, and D should not be less than 80%, 70%, 50%, and 40%, respectively.
Media employed: Board, LCD Projector, Laptop/Computer
Reading List:

PLO and CO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PLO 1</th>
<th>PLO 2</th>
<th>PLO 3</th>
<th>PLO 4</th>
<th>PLO 5</th>
<th>PLO 6</th>
<th>PLO 7</th>
<th>PLO 8</th>
<th>PLO 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td></td>
<td>v</td>
<td></td>
<td></td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO 2</td>
<td></td>
<td></td>
<td>v</td>
<td></td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO 3</td>
<td>v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>